Tecnología 5G

¿Qué es la tecnología 5G?

Proyecto de inclusión digital en la Amazonía peruana. Las áreas rurales con menos infraestructura probablemente se rezagarán en el desarrollo 5G. Crédito de la fotografía: Jack Gordon para USAID / Digital Development Communications.
Proyecto de inclusión digital en la Amazonía peruana. Las áreas rurales con menos infraestructura probablemente se rezagarán en el desarrollo 5G. Crédito de la fotografía: Jack Gordon para USAID / Digital Development Communications.

Nuevas generaciones de tecnología llegan casi cada 10 años. Se espera que 5G, o la quinta generación de tecnologías móviles, sea 100 veces más rápida y tenga 1000 veces más capacidad que generaciones anteriores, facilitando así una conectividad rápida y confiable, un flujo de datos más amplio y la comunicación máquina a máquina. 5G no está diseñado principalmente para conectar personas, sino más bien aparatos. 2G facilitó el acceso a las llamadas de voz y el texting, 3G impulsó los servicios de videos y de redes sociales, y 4G hizo realidad el streaming digital y las aplicaciones que hacían un gran uso de los datos. 5G apoyará los hogares inteligentes, video en 3D, la nube, servicios médicos remotos, la realidad virtual y aumentada, y la comunicación máquina a máquina para la automatización de la industria. Sin embargo, mientras Estados Unidos, Europa y la región Asia Pacífico hacen la transición de 4G a 5G, muchas otras partes del mundo siguen dependiendo fundamentalmente de las redes 2G y 3G, y hay aún más desigualdades entre la conectividad rural y la urbana. Vea en este video una introducción a la tecnología 5G y tanto el entusiasmo como la cautela que la rodean.

¿Qué queremos decir con “G?”

“G” se refiere a generación e indica un umbral para un cambio significativo en la capacidad, arquitectura y tecnología. Estas designaciones son hechas por la industria de telecomunicaciones a través de la autoridad que fija estándares a la que se conoce como 3GPP. 3GPP crea nuevas especificaciones técnicas aproximadamente cada 10 años, de ahí el uso del término “generación”. Un nombre alternativo es la sigla IMT (que quiere decir International Mobile Telecommunications), junto con el año en que el estándar se hizo oficial. Por ejemplo, usted podría ver que 3G también es referido como IMT 2000.

1GHizo posibles las llamadas telefónicas analógicas; trajo los aparatos móviles (movilidad)
2GPermitió las llamadas telefónicas y mensajes digitales; hizo posible la adopción masiva y eventualmente posibilitó los datos móviles (2.5G)
3GHizo posibles las llamadas telefónicas mensajería y acceso a internet
3.5GPermitió una internet más fuerte
4GPermitió una internet más rápida (mejor streaming de video)
5G“La Internet de las Cosas”

Permitirá que los artefactos se conecten entre sí
6G“La Internet de los Sentidos”

Poco se sabe aún

Este video presenta un panorama simplificado de 1G-4G.

Tienda de celulares en Tanzania. La tecnología 5G requiere el acceso a smartphones y aparatos compatibles con la tecnología 5G. Crédito de la fotografía: Riaz Jahanpour para USAID Tanzania / Digital Development Communications.
Tienda de celulares en Tanzania. La tecnología 5G requiere el acceso a smartphones y aparatos compatibles con la tecnología 5G. Crédito de la fotografía: Riaz Jahanpour para USAID Tanzania / Digital Development Communications.

En muchos países en vías de desarrollo hay una brecha entre el estándar celular al que los usuarios se suscriben y el que en realidad usan: muchos se suscriben a 4G pero, como no se desempeña como se ofrece, pueden regresar a 3G. Este cambio o “fallback” (repliegue) no siempre es evidente para el consumidor, y podría ser más difícil de notar al compararse la 5G con redes anteriores.

No es seguro que la tecnología necesariamente funcione como se ha prometido, incluso cuando la infraestructura de 5G esté instalada y los usuarios tengan acceso a través de artefactos capaces: es en efecto probable que no. 5G seguirá dependiendo de tecnologías 3G y 4G, y las compañías telefónicas seguirán operando paralelamente sus redes 3G y 4G.

¿Cómo funciona la tecnología 5G?

Son varios los indicadores claves de rendimiento (KPI) que 5G espera alcanzar. Ella fundamentalmente fortalecerá las redes de celulares usando más frecuencias de radio, conjuntamente con nuevas técnicas para fortalecer y multiplicar los puntos de conexión. Esto quiere decir una conexión más rápida: reducir el tiempo entre un clic en su aparato y el tiempo que le toma ejecutar dicho comando. Esto a su vez permitirá que más aparatos se conecten entre sí a través de la internet de las cosas.

Entendiendo el espectro

Para entender 5G es importante entender un poco del espectro electromagnético radial. Este video presenta un panorama de cómo es que los teléfonos celulares emplean dicho espectro.

5G traerá consigo servicios más rápidos y robustos usando más espectro. Para establecer una red de 5G, es necesario asegurar por adelantado el espectro para dicho fin. Los gobiernos y compañías tienen que negociarlo, usualmente subastando “bandas”, a veces por cantidades gigantescas. La asignación del espectro puede ser un proceso político sumamente complicado. Muchos temen que 5G, que requiere un montón del espectro, amenace la así llamada “diversidad de redes”, esto es la idea de que el espectro debiera usarse para diversos fines entre el gobierno, las empresas y la sociedad.

Para mayor información acerca de la asignación del espectro, consúltese Innovations in Spectrum Management una publicación de Internet Society (2019).

Ondas milimétricas

5G espera aprovechar nuevas bandas no utilizadas en la cima del espectro radial, a las que se conoce como ondas milimétricas (mmwaves). Éstas se encuentran mucho menos atiborradas que las bandas inferiores, lo que permite efectuar transferencias de datos más rápidas. Pero las ondas milimétricas son complicadas: su rango máximo es de aproximadamente 1.6 km, y los árboles, muros, lluvia y neblina pueden limitar la distancia por la que la señal viaja a apenas 1 km. En consecuencia, 5G requerirá un volumen más alto de torres de celulares, en comparación con las pocas torres enormes requeridas para 4G. 5G necesitará contar con torres cada 100 metros afuera y cada 50 metros adentro, razón por la cual es más idónea para centros urbanos densos (como veremos más adelante con mayor detenimiento). El potencial teórico de las ondas milimétricas es apasionante, pero en realidad la mayoría de compañías de 5G están intentando implementarlo en las partes inferiores del espectro.

¡No olvide la fibra!

La tecnología 5G funciona en una infraestructura de fibra. Podemos entender la fibra como el sistema nervioso de una red móvil, que conecta los centros de datos con las torres de celulares.

5G requires data centers, fiber, cell towers, and small cells

Los operadores móviles y los cuerpos internacionales que fijan estándares, entre ellos la Unión Internacional de Telecomunicaciones, creen que la fibra es el mejor material conector debido a su larga vida, alta capacidad, alta confiabilidad y su capacidad para soportar un tráfico muy alto. Pero la inversión inicial es costosa (un estudio de Deloitte de 2017 calculó que la implementación de 5G en los Estados Unidos requeriría de una inversión de al menos $130 billones en fibra) y a menudo prohibitiva en términos del costo para proveedores y operadores, en particular en los países en vías de desarrollo y en áreas rurales. A veces se publicita a 5G como un reemplazo para la fibra; sin embargo, ésta y 5G son tecnologías complementarias.

El gráfico que aparece a continuación a menudo se emplea para explicar las características primarias que conforman la tecnología de 5G (capacidad mejorada, baja latencia y mejor conectividad), así como las posibles aplicaciones de dichas características.

Features that make up 5G technology: enhanced capacity, low latency, and enhanced connectivity, and the potential applications of these features

¿Quién proporciona la tecnología 5G?

El mercado de proveedores de 5G está muy concentrado, incluso más que el de generaciones anteriores. Un puñado de compañías son capaces de suministrar la tecnología necesaria a los operadores de telecomunicaciones. Huawei (China), Ericsson (Suecia) y Nokia (Finlandia) han liderado el avance para ampliar 5G y usualmente hacen interface con las compañías de telecomunicaciones locales, proporcionando a veces y servicios de mantenimiento.

En 2019, el gobierno de los Estados Unidos aprobó una ley de defensa de autorización del gasto, la NDAA sección 889, que esencialmente prohíbe que las agencias de los EE.UU. utilicen equipos de telecomunicaciones fabricados por proveedores chinos (por ejemplo, Huawei y ZTE). Se impuso esta restricción por temor a que el gobierno chino pudiera usar su infraestructura de telecomunicaciones para espiar (véase más en la sección Riesgos). La
NDAA sección 889 puede aplicarse a cualquier contrato efectuado con el gobierno de los EE.UU., por lo cual es crucial que las organizaciones que vienen considerando asociarse con proveedores chinos tengan en mente los retos legales que tendría tratar tanto con el gobierno chino como el de los EE.UU. en relación con 5G.

Esto, claro está, quiere decir que la variedad de los fabricantes de 5G de golpe se ha hecho mucho más limitada. Las compañías chinas tienen por lejos la mayor participación del mercado de la tecnología 5G. Huawei tiene la mayoría de las patentes registradas, y la presencia lobbista más vigorosa dentro de la Unión Internacional de Telecomunicaciones.

La cancha del 5G es ferozmente política y hay fuertes tensiones entre China y los Estados Unidos. Dado que la tecnología 5G se encuentra estrechamente conectada con la fabricación de los chips, es importante vigilar la “guerra de los chips”. Es probable que los proveedores que dependen de compañías estadounidenses y chinas queden cogidos en medio a medida que la guerra comercial entre ambos países empeora, puesto que las cadenas de suministro y la fabricación de equipos a menudo depende de ambos países. Peter Bloom, fundador de Rhizomatica, señala que se proyecta que el mercado global de chips habrá de crece hasta $22.41 billones para 2026. Bloom advierte: “El impulso a 5G comprende una plétora de grupos de interés, en particular de gobiernos, instituciones financieras y compañías de telecomunicaciones, que debe analizarse mejor a fin de entender dónde se están moviendo las cosas, qué intereses vienen siendo atendidos, y las posibles consecuencias de dichos cambios”.

Inicio

¿De qué modo es 5G relevante en el espacio cívico y para la democracia?

Agencia monetaria móvil en Ghana. Aproximadamente el 50% de la población mundial aún no está conectada a la internet. Crédito de la fotografía: John O’Bryan/ USAID.
Agencia monetaria móvil en Ghana. Aproximadamente el 50% de la población mundial aún no está conectada a la internet. Crédito de la fotografía: John O’Bryan/ USAID.

5G es la primera generación que no prioriza el acceso y la conectividad para los humanos. Ella más bien brinda un nivel de super-conectividad para casos de uso suntuario y entornos específicos; por ejemplo, las experiencias de realidad virtual mejorada y juegos de video masivamente multiusuario. Muchos de los casos publicitados, como la cirugía remota, son teóricos y experimentales, y aún no existen de modo amplio en la sociedad. En efecto, la telecirugía es uno de los ejemplos más citados de los beneficios de 5G, pero sigue siendo una tecnología prototipo. Su implementación a escala requiere abordar muchas cuestiones técnicas y resolver cuestiones legales, además de desarrollar una red global.

El acceso a la educación, el cuidado de la salud y la información son derechos fundamentales, pero los juegos de video de múltiples jugadores, la realidad virtual y los vehículos autónomos —todos los cuales dependen de 5G— no lo son. 5G es un desvío de la infraestructura crucial, necesaria para poner a la gente en línea para que goce de sus derechos fundamentales y permitir así el funcionamiento de la democracia. En realidad, la concentración en 5G desvía la atención de soluciones inmediatas a la mejora del acceso y del cubrir la brecha digital.

El porcentaje de la población global que usa internet viene subiendo, pero una parte significativa del mundo aún no está conectado a ella. Es poco probable que 5G aborde la brecha en el acceso a internet entre las poblaciones rurales y urbanas, o entre las economías desarrolladas y en vías de desarrollo. Lo que se requiere para mejorar el acceso a internet en contextos industriales en desarrollo es más fibra, más puntos de intercambio de internet (IXP), más torres de celulares, más routers de Internet, más espectro inalámbrico y un suministro eléctrico confiable. En un libro blanco de la industria, sólo una de 125 páginas examinó una versión “reducida” de 5G que aborde las necesidades de áreas con un ingreso medio extremadamente bajo por usuario (ARPU). Estas soluciones incluyen el limitar aún más las áreas geográficas del servicio.

Capacitadores digitales en Mugumu, Tanzania. 5G no está diseñado fundamentalmente para conectar personas, sino más bien aparatos. Crédito de la fotografía: foto de Bobby Neptune para DAI.
Capacitadores digitales en Mugumu, Tanzania. 5G no está diseñado fundamentalmente para conectar personas, sino más bien aparatos. Crédito de la fotografía: foto de Bobby Neptune para DAI.

Esta presentación efectuada por la corporación estadounidense INTEL en un foro regional de la UIT en 2016, anuncia las aspiraciones usuales de 5G: vehículos autónomos (denominados “transporte inteligente”), realidad virtual (denominada “aprendizaje electrónico”), cirugía remota (llamada “e-salud”), y sensores para apoyar el manejo del agua y la agricultura. De igual modo, casos sumamente específicos y teóricos de uso futuro — vehículos autónomos, automatización industrial hogares, ciudades y logística inteligente— fueron anunciados durante un webinar de 2020 patrocinado por la Kenya ICT Action Network en asociación con Huawei.

En ambas presentaciones el énfasis recayó en la conexión de objetos, demostrando así que 5G está diseñado para las grandes industrias y no para las personas. E incluso si 5G fuese accesible en las áreas rurales remotas, para acceder a ella la gente probablemente tendría que comprar los más costosos planes de datos ilimitados. Este costo se suma al de tener que adquirir teléfonos inteligentes y aparatos compatibles con 5G. Las compañías de telecomunicaciones mismas calculan que sólo el 3% del África subsahariana usará 5G. Se calcula que para 2025, la mayoría de la gente seguirá usando 3G (aproximadamente 60%) y 4G (alrededor del 40%), una tecnología que ha existido ya por 10 años.


Banda ancha de 5G / Acceso inalámbrico fijo (FWA)

Dado que la mayoría de las personas en los países en contextos en vías de desarrollo industrial se conecta a la internet a través de la infraestructura de telefonía celular y la banda ancha móvil, lo más útil para ellas sería la “banda ancha 5G”, a la cual también se denomina Acceso Inalámbrico Fijo 5G (FWA). FWA está diseñado para reemplazar la infraestructura de “última milla” con una red inalámbrica de 5G. En efecto, esta “última milla” —la distancia final al usuario final— es a menudo la más grande barrera al acceso a internet en todo el mundo. Pero dado que la inmensa mayoría de estas redes de 5G habrán de depender de una conexión de fibra, física, la FWA sin fibra no sería de la misma calidad. Estas redes de FWA serán también más costosas de mantener para los operadores que la infraestructura tradicional o “ancha banda fija estándar”.

Este artículo de Ericsson, uno de los principales proveedores de 5G, afirma que FWA será uno de los principales usos de 5G, pero el artículo muestra que los operadores contarán con una amplia capacidad para adaptar sus tarifas, y admite además que muchos mercados seguirán siendo abordados con 3G y 4G.

5G no reemplazará otros tipos de conectividad de internet para la ciudadanía

Mientras que 5G requiere de una enorme inversión en infraestructura física, las nuevas generaciones de acceso celular a Wi-Fi están haciéndose más accesibles y asequibles. Hay también una creciente variedad de soluciones de “redes comunitarias”, entre ellas redes en malla de Wi-Fi, y a veces hasta fibras de propiedad comunal. Para mayor información consúltese: 5G and the Internet of EveryOne: Motivation, Enablers, and Research Agenda, IEEE (2018). Estas son alternativas importantes a 5G a las que se debe considerar en cualquier contexto (desarrollado y en vías de desarrollo, urbano y rural).

“Si estamos hablando de sed y falta de agua, 5G es fundamentalmente un nuevo tipo de cóctel, un nuevo sabor para atraer consumidores sofisticados, siempre y cuando vivas en lugares rentables para el servicio y puedas pagarlo. La renovación de equipos y aparatos de comunicación es una oportunidad de negocio fundamentalmente para los fabricantes, pero sencillamente no es la mejor ‘agua’ para los clientes desconectados, rurales (que no son premium) e incluso es un problema puesto que la inversión de los operadores es empujada primero por la tendencia a satisfacer a los clientes urbanos de alto poder adquisitivo, y no a difundir la conectividad a la inclusión social/universal de los clientes de bajo poder adquisitivo”. – IGF Dynamic Coalition on Community Networks, en comunicación con los autores de este recurso.

Es crucial que no olvidemos las redes de la generación previa. 2G seguirá siendo importante para brindar una amplia cobertura. Ella ya está sumamente presente (alrededor del 95% en los países de ingreso bajo y medio), requiere de menos datos y transporta bien la voz y el tráfico de SMS, lo que significa que es una opción segura y confiable en muchas situaciones. Además, actualizar los sitios ya existentes de 2G a 3G o 4G es menos costoso que construir sitios nuevos.

5G y el sector privado

La tecnología que 5G facilita (la Internet de las cosas , ciudades inteligentes ,hogares inteligentes) alentará la instalación de chips y sensores en un número cada vez más grande de objetos. Los artefactos que 5G propone conectar no son fundamentalmente teléfonos y computadoras, sino sensores, vehículos, equipos industriales, aparatos médicos implantados, drones, cámaras, etc. Vincular dichos aparatos plantea una serie de problemas de seguridad y privacidad, tal como se explora en la sección Riesgos.

Los actores que más se beneficiarán con 5G no son la ciudadanía o los gobiernos democráticos, sino los corporativos. El modelo empresarial que impulsa 5G gira en torno al acceso de la industria a aparatos conectados: en las manufacturas, la industria automotriz, en el transporte y la logística, en la generación de energía y el monitoreo eficiente, etc. 5G impulsará el crecimiento económico de aquellos actores capaces de beneficiarse con ella, en particular los que están comprometidos con la automatización, pero sería apresurado asumir que dichos beneficios se repartirán por toda la sociedad.

La introducción de 5G introducirá masivamente al sector privado dentro del espacio público a través de los carriers y operadores de internet, así como otras terceras partes detrás de los muchos aparatos conectados. Esta toma del espacio público por parte de actores privados (y usualmente actores privados extranjeros) debe ser considerada cuidadosamente a través del lente de la democracia y de los derechos fundamentales. Es cierto que el sector privado ya entró a nuestros espacios públicos (calles, parques, centros comerciales) con las redes celulares anteriores pero el arribo de 5G, que trae consigo más objetos conectados y mayor frecuencia de torres de celulares, incrementará dicha presencia.

Aunque las redes 5G guardan la promesa de una mejor conectividad, hay una creciente preocupación en torno a su mal uso para efectuar prácticas antidemocráticas. Se ha observado a gobiernos de diversas regiones usando la tecnología para obstruir la transparencia y suprimir el disenso, dándose casos del cierre de internet durante las elecciones y la vigilancia de opositores políticos. Por ejemplo, entre 2014 y 2016, los cierres de internet fueron usados en una tercera parte de las elecciones en el África subsahariana.

Estas prácticas a menudo se ven facilitadas por la colaboración con las compañías que brindan herramientas avanzadas de vigilancia, y que permiten el monitoreo de periodistas y activistas sin el debido proceso. El crecimiento sustancial en la transmisión de datos que 5G ofrece elevó la apuesta, permitiendo potencialmente una vigilancia más ubicua y una amenaza más significativa a la privacidad y los derechos de las personas, en particular los de los marginados. Es más, en el momento en que los sistemas electorales dependen más de la tecnología, con iniciativas para poner el voto en línea, el riesgo de los ciberataques que aprovechan las vulnerabilidades de 5G podrían comprometer la integridad de las elecciones democráticas, lo cual hace que la protección contra estas intrusiones sea una prioridad crucial.

Inicio

Oportunidades

Los beneficios anunciados de 5G usualmente caen dentro de tres áreas, tal como se esboza a continuación. También se explicará una cuarta área de beneficios que si bien se cita menos en la bibliografía, sería la más directamente beneficiosa para la ciudadanía. Debe apuntarse que estos beneficios no estarán disponibles pronto, y que tal vez jamás sean ampliamente disponibles. Muchos seguirán siendo servicios de elite, disponibles solo bajo condiciones precisas y a alto costo. Otros requerirán de estandarización, infraestructura legal y reguladora, y una adopción generalizada antes de que puedan ser una realidad social.

El cuadro que aparece a continuación, que ha sido tomado de un informe de GSMA, muestra los beneficios usualmente enumerados de 5G. Los de la sección blanca podrían alcanzarse con redes anteriores como 4G, y los de la sección púrpura requerirán de 5G. Esto subraya aún más el hecho que muchos de los objetivos de 5G son en realidad posibles sin ella.

Benefits of 5G

Realidad aumentada e Internet táctil

5G tiene muchos usos potenciales en el esparcimiento, y en los juegos en especial. Una baja latencia posibilita los juegos masivos de multijugador, conferencias con video de mayor calidad, descargas más rápidas de videos de alta calidad, etc. La realidad virtual y aumentada son promocionadas como formas de crear experiencias inmersivas de aprendizaje en línea. La capacidad de 5G para conectar aparatos posibilitará el uso de dispositivos médicos vestibles a los que se puede controlar remotamente (aunque no sin riesgos de ciberseguridad). Tal vez el ejemplo más fascinante de la “internet táctil” es la posibilidad de la cirugía a distancia: una operación podría ser efectuada por un robot controlado a distancia por un cirujano en algún lugar al otro lado del mundo. Los sistemas necesarios para esto se encuentran en su infancia y dependen también del desarrollo de otras tecnologías, así como de estándares reguladores y legales, y de un modelo empresarial viable.

Vehículos autónomos

El mayor beneficio de 5G será en el sector automotriz. Se espera que su alta velocidad permite que los autos se coordinen de forma segura entre sí y con otra infraestructura. Para que los vehículos autónomos sean seguros deberán poder comunicarse entre ellos y con todo lo que les rodea en milisegundos. La súpervelocidad de 5G es importante para poder alcanzar esto. (Al mismo tiempo, 5G plantea otros problemas de seguridad a los vehículos autónomos.)

Conectividad máquina a máquina (IdC)/hogares inteligentes/ciudades inteligentes)

La conectividad máquina a máquina o M2M, ya existe en muchos aparatos y servicios, pero 5G facilitaría esto aún más. Esto beneficiará a los jugadores industriales (manufactureros, proveedores de logística, etc.), pero podría discutiblemente beneficiar sobre todo a las personas o ciudades que deseen monitorear su uso de ciertos recursos como la energía o el agua. Los sensores instalados pueden ser usados para recolectar datos los cuales a su vez pueden analizarse para ver su eficiencia y el sistema puede entonces optimizarse. Las aplicaciones típicas de M2M en el hogar inteligente incluyen termóstatos y detectores de humo, electrónica de consumo y el monitoreo del cuidado de la salud. Debe señalarse que muchos de estos dispositivos pueden operar con redes de 4G, 3G y hasta 2G.

El acceso inalámbrico fijo (FWA) basado en 5G puede proporcionar a los hogares una banda ancha de Gigabit

Tal vez el beneficio más relevante de 5G en contextos en vías de desarrollo industrial será el potencial del FWA. Éste es menos citado en la literatura del marketing porque no permite del todo los beneficios industriales prometidos. Se le debe pensar como un tipo distinto de “5G” puesto que permite una amplitud de conectividad antes que una fortaleza o intensidad revolucionarias. (Véase la sección Banda ancha de 5G / Acceso inalámbrico fijo  section.) Como ya se explicó, el FWA requiere aún de inversiones en infraestructura y no necesariamente será más asequible que las alternativas de banda ancha debido al creciente poder dado a los carriers.

Inicio

Riesgos

El uso de tecnologías emergentes puede asimismo crear riesgos en los programas de la sociedad civil. Lea a continuación cómo distinguir los posibles peligros asociados con 5G en el trabajo de DRG, así como el modo de mitigar consecuencias involuntarias y voluntarias.

Privacidad personal

Con 5G conectando más y más aparatos, el sector privado ingresará aún más dentro del espacio público a través de sensores, cámaras, chips, etc. Muchos de los dispositivos conectados serán cosas que antes jamás esperamos que se conectaran a la internet: lavadoras, inodoros, cunas, etc. Algunos incluso estarán dentro de nuestro cuerpo, como los marcapasos inteligentes. La colocación de aparatos con chips en nuestro hogar y entornos facilitará la recolección de datos acerca de nosotros, así como otras formas de vigilancia.

Un número creciente de actores terceros cuenta con métodos sofisticados de recolectar y analizar datos personales. Algunos dispositivos podrían finalmente recolectar sólo metadatos, pero esto podría reducir seriamente la privacidad. Los metadatos son información relacionada con nuestras comunicaciones que no incluyen su contenido: por ejemplo los números a los que se llamó, las páginas web visitadas, la ubicación geográfica o la hora y fecha en que se hizo una llamada. La corte suprema de la UE ha dictaminado que este tipo de información puede ser considerada igual de sensible que el contenido mismo de la comunicación, debido al conocimiento de nuestra vida privada que los datos pueden ofrecer. 5G permitirá que los operadores de telecomunicaciones y otros actores accedan a los metadatos a los que se puede reunir para tener un conocimiento de nosotros que reducirá nuestra privacidad.

Por último, 5G requiere muchas pequeñas estaciones base de celulares, de modo tal que dichas torres estarán mucho más cerca de los hogares y centros de trabajo de la gente, en semáforos, postes de alumbrado, etc. Esto hará que el monitoreo de la ubicación sea mucho más preciso y hará que la privacidad de la ubicación sea algo casi imposible.

Espionaje

Para la mayoría, 5G será suministrada por compañías extranjeras. En el caso de Huawei y ZTE, el gobierno del país en donde dichas compañías operan (la República Popular China) no defiende las obligaciones de los derechos humanos o los valores democráticos. Por esta razón, a algunos gobiernos les preocupa el potencial para el abuso de los datos por parte del espionaje extranjero. Varios países, entre ellos los Estados Unidos, Australia y el Reino Unido, han tomado medidas para limitar el uso de equipos chinos en sus redes de 5G debido al temor a un posible espionaje. Un informe de 2019 acerca de los riesgos de seguridad de 5G, obra de la Comisión Europea y la Agencia de la Unión Europea para la Ciberseguridad, advierte en contra del uso de un único proveedor en la infraestructura de 5G debido al riesgo de espionaje. El argumento general en contra de un único proveedor (usualmente formulado en contra del proveedor chino Huawei), es que si este suministra la infraestructura central de la red de 5G, entonces su gobierno (China) conseguirá una inmensa capacidad de vigilancia a través de los metadatos, o incluso la “puerta trasera” de una vulnerabilidad. El espionaje gubernamental a través del sector privado y de los equipos de telecomunicaciones son algo común y China no es el único culpable. Pero la masiva capacidad de las redes de 5G y los muchos aparatos conectados que recogen información personal, mejorarán la información en juego así como los riesgos.

Riesgos de ciberseguridad

Como regla general, cuanto más conectados digitalmente estemos, tanto más vulnerables somos a las ciberamenazas. 5G busca hacer que nosotros y nuestros aparatos estemos ultraconectados. Si un vehículo autónomo en una red inteligente es hackeado o se malogra, esto podría generar un peligro físico inmediato y no solo una filtración de información. 5G centraliza la infraestructura alrededor de un núcleo, lo cual hace que sea particularmente vulnerable. Dada la amplia aplicación de las redes basadas en 5G, esta trae consigo la posibilidad creciente de cierres de internet, lo que pone en peligro gran parte de la red.

La infraestructura de 5G podría simplemente tener deficiencias técnicas. Muchas de estas deficiencias aún no se conocen porque esta tecnología aún sigue en las fases piloto. 5G promociona algunas funciones de seguridad mejoradas, pero los agujeros de seguridad permanecerán porque los aparatos seguirán conectados a las redes más antiguas.

Costos de inversión descomunales y retornos cuestionables

Tal como A4AI lo explica, “La introducción de la tecnología 5G demandará una inversión significativa en infraestructura, lo que incluye nuevas torres capaces de suministrar una mayor capacidad, y centros de datos más grandes que funcionan con energía eficiente”. Estos costos probablemente serán pasados a los consumidores, quienes tendrán que comprar aparatos compatibles y datos suficientes. 5G necesita una inversión masiva en infraestructura, incluso en lugares que ya cuentan con una sólida infraestructura 4G, cables de fibra óptica, buenas conexiones de última milla y un suministro eléctrico confiable. Los cálculos del costo total de la implementación de 5G —lo que incluye las inversiones en tecnología y el espectro— alcanzan incluso los $2.7 trillones USD. Dados los muchos riesgos de seguridad, las incertidumbres reguladoras y la naturaleza en general no probada de la tecnología, 5G resulta no ser una inversión segura ni siquiera en los centros urbanos pudientes. El alto costo de su introducción será un obstáculo para su expansión, y no es probable que los precios caigan lo suficiente como para hacer que sea ampliamente asequible.

Dado que se trata de un producto nuevo tan complejo, hay el riesgo de que se compren equipos de baja calidad. 5G es sumamente dependiente de software y servicios de terceros, lo que multiplica las posibilidades de que haya defectos en partes de los equipos (código mal escrito, mala ingeniería, etc.). El proceso de parchar estos fallos podría ser largo, complicado y costoso. Algunas vulnerabilidades podrían quedar sin ser identificadas por mucho tiempo, pero podrían repentinamente provocar severos problemas de seguridad. La falta de cumplimiento de los estándares de la industria o legales podría provocar problemas similares. En algunos casos los nuevos equipos podrían no tener fallos ni ser defectuosos, sino simplemente ser incompatibles con los equipos ya existentes o con las compras hechas a otros proveedores. Es más, tan solo manejar la red de 4G debidamente tiene costos enormes: protegerla de ciberataques, parchar agujeros y enfrentar fallos, y mantener actualizada la infraestructura material. Para estas tareas es necesario contar con operadores humanos calificados y confiables.

Dependencia extranjera y riesgos geopolíticos

La instalación de nueva infraestructura significa la dependencia de actores del sector privado, usualmente de países extranjeros. La dependencia excesiva de actores privados extranjeros genera múltiples preocupaciones, como ya se dijo, relacionadas con la ciberseguridad, la privacidad, el espionaje, los costos excesivos, la compatibilidad, etc. Dado que sólo un puñado de actores son plenamente capaces de suministrar 5G, se corre también el riesgo de hacerse dependiente de un país extranjero. Y dadas la actual tensión geopolítica entre los EE.UU. y China, los países que intenten instalar la tecnología 5G podrían quedar cogidos en el fuego cruzado de una guerra comercial. Así lo explica Jan-Peter Kleinhans, un experto en seguridad y en 5G de Stiftung Neue Verantwortung (SNV): “El caso de Huawei y 5G forma parte de un desarrollo más amplio en las tecnologías de la información y las comunicaciones (TIC). Estamos pasando de un mundo unipolar con los EE.UU. como líder tecnológico, a otro bipolar en el cual China tiene un papel cada vez más dominante en el desarrollo de las TIC”. La carga financiera de este mundo bipolar será pasada a proveedores y clientes.

Divisiones de clase/riqueza y urbanas/rurales

“Sin un plan completo de la infraestructura de fibra, 5G no revolucionará el acceso a Internet o la velocidad para los clientes rurales. De modo tal que cada vez que la industria afirme que 5G revolucionará el acceso a la banda ancha rural, están haciendo algo más que promocionándolo demasiado, sencillamente están engañando a la gente”. — Ernesto Falcon, la Electronic Frontier Foundation.

5G no es una inversión lucrativa para los operadores en las áreas más rurales y en contextos en vías de desarrollo, en donde la densidad de los dispositivos potencialmente conectados es más baja. En la industria hay un consenso, apoyado por la UIT misma, en que el despliegue inicial de 5G será en áreas urbanas densas, en particular las áreas pudientes con presencia de la industria. Es probable que las áreas rurales y más pobres, que cuentan con menos infraestructura existente, se quedarán atrás porque no son una buena inversión comercial para el sector privado. En las áreas rurales e incluso en las suburbanas, es probable que las ondas milimétricas y las redes de celulares que requieren de densas torres no sean una solución viable. En consecuencia, 5G no cubrirá la brecha digital de las áreas urbanas y de menores ingresos. La reforzará al ofrecer una súperconectividad a los que ya cuentan con acceso y pueden pagar dispositivos aún más costosos, al mismo tiempo que hace que el costo de la conectividad resulte más alto para otros.

Uso energético e impacto ambiental

Huawei ha compartido que el sitio típico de 5G tiene un requisito energético de más de 11.5 kilowatts, casi 70% más que aquellos que aplican 2G, 3G y 4G. Algunos calculan que la tecnología 5G usará dos a tres veces más energía que las tecnologías móviles previas. 5G requerirá de más infraestructura, lo que significa un mayor suministro energético y más capacidad de las baterías, todo lo cual tiene consecuencias ambientales. Las cuestiones ambientales más significativas asociadas con su implementación provienen de la fabricación de las muchas partes componentes, junto con la proliferación de los nuevos aparatos que usarán la red 5G. Ésta alentará una mayor demanda y consumo de aparatos digitales, y por ende la creación de más chatarra electrónica, lo cual también habrá de tener serias consecuencias ambientales. Según Peter Bloom, el fundador de Rhizomatica, la mayor parte del daño ambiental provocado por 5G tendrá lugar en el sur global. Esto incluye los daños al ambiente y a las comunidades en donde se extraen los materiales y minerales, así como la polución debida a la chatarra electrónica. En los Estados Unidos, la Oficina Nacional de Administración Oceánica y Atmosférica y la NASA reportaron el año pasado que la decisión de abrir las bandas de alto espectro (el espectro de 24 gigahercios) afectaría durante décadas la capacidad de predecir el clima.

Inicio

Preguntas

Para entender el potencial que 5G tiene para su entorno laboral o comunidad, hágase estas preguntas para evaluar si es la solución más apropiada, más segura, la más efectiva en términos de los costos y la más centrada en el ser humano:

  1. ¿La gente ya puede conectarse de modo suficiente a la internet? ¿Se cuenta con la infraestructura necesaria (fibra, puntos de intercambio de internet, electricidad) para conectarse a través de 3G o 4G, o mediante Wi-Fi?
  2. ¿Se cuenta con las condiciones para aplicar 5G efectivamente? Esto es, ¿hay suficiente backhaul de fibra e infraestructura de 4G (recuerde que 5G aún no es una tecnología standalone)?
  3. ¿Qué caso(s) de uso específico(s) tiene para 5G que no puedan alcanzarse con una red de una generación anterior?
  4. ¿Qué otros planes se están haciendo para abordar la brecha digital empleando Wi-Fi y redes en malla, competencia y capacitación digital, etc.?
  5. ¿Quién se beneficiará con el uso de 5G? ¿Quién podrá acceder a ella? ¿Tienen los aparatos apropiados y suficientes datos? ¿El acceso será asequible?
  6. ¿Quién está suministrando la infraestructura? ¿Qué tanto se puede confiar en ellos en lo que respecta a la calidad, precio, seguridad, privacidad de datos, y posible espionaje?
  7. ¿Los beneficios de 5G superan los costos y riesgos (en relación con la seguridad, inversión financiera y posibles consecuencias geopolíticas)?
  8. ¿Se cuenta con suficientes recursos humanos calificados para mantener la infraestructura de 5G? ¿Cómo se resolverán las fallas y las vulnerabilidades?

Inicio

Estudios de caso

América Latina y el Caribe

5G: el impulsor de la sociedad digital de siguiente generación en América Latina y el Caribe

“Muchos países de todo el mundo tienen prisa por adoptar 5G para asegurar rápidamente los significativos beneficios económicos y sociales que trae consigo. Dadas las enormes oportunidades que las redes de 5G habrán de crear, los países de América Latina y el Caribe (ALC) deben adoptarla activamente. Sin embargo, para desplegar exitosamente las redes de 5G en la región, es importante resolver primero los retos que habrán de enfrentar, entre ellos los altos costos de implementación, el asegurar el espectro, la necesidad de desarrollar instituciones y las cuestiones en torno a la activación. Para que las redes de 5G se establezcan y utilicen con éxito, los gobiernos de ALC deben tomar una serie de medidas, entre ellas mejorar la regulación, establecer instituciones y brindar apoyo financiero relacionado con la inversión en la red de 5G”.

El Reino Unido

El Reino Unido fue de los primeros mercados en lanzar globalmente 5G en 2019. Como sus operadores han intensificado la inversión en 5G, el mercado ha estado a la par con otros países europeos en términos de su performance, pero sigue detrás de “pioneros de la 5G” como Corea del Sur y China. Por motivos de seguridad, en 2020 el gobierno británico prohibió que los operadores emplearan equipos de 5G suministrados por Huawei, la compañía de telecomunicaciones china, y fijó 2023 como fecha límite para el retiro de sus equipos y servicios de las funciones centrales de la red, y 2027 para su retiro total. El Digital Connectivity Forum advirtió en 2022 que el RU estaba en riesgo de no aprovechar plenamente el potencial de 5G debido a su insuficiente inversión, lo cual afectaría el desarrollo de nuevos servicios tecnológicos como los vehículos autónomos, la logística automatizada y la telemedicina.

Las Monarquías del Golfo Pérsico

Los Estados de las Monarquías del Golfo Pérsico fueron de los primeros en el mundo en lanzar nuevos servicios comerciales de 5G, y han invertido fuertemente en 5G y en tecnologías avanzadas. Los proveedores de servicio local árabes están asociándose con ZTE y Nokia para extender su alcance en los países árabes y asiáticos. En muchos países del golfo los proveedores de 5G y de Internet son de propiedad fundamentalmente estatal, consolidando la influencia gubernamental de este modo sobre los servicios o plataformas apoyados por 5G. Esto podría hacer que solicitar el compartir datos o cerrar la Internet resulte más fácil para los gobiernos. Dubái ya viene aplicando tecnología de reconocimiento facial desarrollada por compañías con lazos con el PCCh para su programa “Policía sin Policías” (Ahmed, R. et al., 13).

Corea del Sur

Corea del Sur se ha establecido como un temprano líder de mercado para el desarrollo de 5G. Sus redes en Asia serán fundamentales para la difusión del desarrollo de 5G dentro de la región. Actualmente la empresa surcoreana Samsung está presente principalmente en el mercado de los aparatos de 5G. Samsung viene siendo considerado como reemplazo de Huawei en las discusiones del “Club D10”, un grupo proveedor de telecomunicaciones fundado por el RU y que consta de los miembros del G7 más India, Australia y Corea del Sur. Sin embargo, los detalles de su agenda aún están por fijarse. Aunque Corea del Sur y otros intentan expandir su papel en 5G, el desacoplar a Huawei de las TIC y los tradeoffs en el comercio seguro están haciendo que el proceso sea más complicado (Ahmed, R. et al., 14).

AÁfrica

¿Qué gobiernos han introducido 5G en África?

“En África los gobiernos son optimistas en que un día podrán emplear 5G para efectuar una agricultura a gran escala con drones, introducir vehículos autónomos a las carreteras, conectarse al metaverso, activar hogares inteligentes y mejorar la ciberseguridad. Algunos analistas predicen que para 2034, 5G sumará otros $2.2 trillones a la economía africana. Pero los primeros en impulsar 5G en África enfrentan fuertes problemas que tal vez retrasen sus metas respectivas. Los retos giraron en torno a la claridad de la regulación del espectro, la viabilidad comercial, los plazos de la implementación y el bajo poder adquisitivo de la ciudadanía con respecto a smartphones habilitados para 5G y una internet costosa”. Para mediados de 2022 Botsuana, Egipto, Etiopía, Gabón, Kenia, Lesoto, Madagascar, Mauricio, Nigeria, Senegal, Seychelles, Sudáfrica, Uganda y Zimbabue estaban probando o habían aplicado 5G, pero muchos de estos países tuvieron demoras en su introducción.

Inicio

Referencias

A continuación aparecen los trabajos citados en este recurso.

Recursos adicionales

  • La Association for Progressive Communications tuvo un webinar on 5G and Covid-19.
  • Finley, Klint & Joanna Pearlstein. (2020). The WIRED Guide to 5G.
  • Rhizomatica: una organización sin fines de lucro con sede en México, que cuenta con recursos y artículos en un blog sobre 5G y temas afines (en inglés y español).
  • The Prague Proposals: dadas en Praga después de la Prague 5G Security Conference en mayo de 2019.

Inicio

Categories

Inteligencia artificial y aprendizaje automático

¿Qué son la IA y el AA?

La inteligencia artificial (IA) es un campo de las ciencias de la computación dedicado a resolver problemas cognitivos usualmente asociados con la inteligencia humana como el aprendizaje, la resolución de problemas y el reconocimiento de patrones. Dicho de otro modo, IA es un término de múltiple contenido al cual se usa para describir nuevos tipos de software que pueden acercarse a la inteligencia humana. No hay una única definición precisa y universal de IA.

El aprendizaje automático (AA) es un subconjunto de IA. Esencialmente es una de las formas en que las computadoras “aprenden”. El AA es un enfoque de IA basado en algoritmos entrenados para que desarrollen sus propias reglas. Esta es una alternativa a los programas tradicionales de computación, en los cuales las reglas deben ser programadas a mano. El aprendizaje automático extrae patrones de los datos y los coloca en distintos conjuntos. Se ha descrito al AA como “la ciencia de hacer que las computadoras actúen sin haber sido programadas explícitamente”. Dos breves videos nos dan explicaciones simples de IA y AA: ¿Qué es la inteligencia artificial? | Explicación de la IA y ¿Qué es el aprendizaje automático?

Otros subconjuntos de AI son el procesamiento de voz, procesamiento de lenguaje natural (PLN), robótica, cibernética, visión artificial, sistemas expertos, sistemas de planificación y computación evolutiva.

artificial intelligence, types

El diagrama anterior muestra los muchos tipos distintos de campos tecnológicos que la IA comprende. Esta última puede referirse a un amplio campo de tecnologías y aplicaciones. El aprendizaje automático es una herramienta empleada para crear sistemas de IA. Cuando nos referimos a esta podemos estar aludiendo a una o varias de estas tecnologías o campos. Las aplicaciones que utilizan IA, como Siri o Alexa, usan múltiples tecnologías. Si, por ejemplo, le decimos a Siri: “Siri, muéstrame la figura de una banana”, usará el procesamiento del lenguaje natural (búsqueda de respuestas) para entender qué se le está preguntado, y luego usará la visión digital (reconocimiento de imágenes) para hallar una banana y mostrársela.

Como ya se indicó, la IA no cuenta con una definición universal. Hay muchos mitos en torno a ella, desde el temor de que controle el mundo esclavizando a los humanos, hasta la esperanza de que algún día se la pueda usar para curar el cáncer. Esta introducción busca brindar una comprensión básica de la inteligencia artificial y el aprendizaje automático, así como esbozar algunos de los beneficios y riesgos que la IA presenta.

Definiciones

Algoritmo: se define a un algoritmo como “una serie finita de instrucciones bien definidas que una computadora puede implementar para resolver un conjunto específico de problemas computacionales”. Los algoritmos son procedimientos nada ambiguos y paso a paso. Un ejemplo simple de un algoritmo sería una receta; otro sería un procedimiento para encontrar al número más grande en un conjunto numérico ordenado aleatoriamente. Un algoritmo puede o bien ser creado por un programador, o sino ser generado automáticamente. En este último caso lo será utilizando datos mediante el AA.

Toma de decisiones algorítmica/Sistema de decisión algorítmica (SDA): los sistemas de decisión algorítmica emplean análisis de datos y estadísticos para tomar decisiones automatizadas, como por ejemplo establecer si una persona es elegible para un beneficio o una pena. Entre los ejemplos de sistemas de decisión algorítmica completamente automatizados tenemos al control electrónico de pasaportes en los aeropuertos, o una decisión automatizada tomada por un banco para otorgar a un cliente un préstamo sin garantía, sobre la base de su historial crediticio y su perfil de datos en el banco. Las herramientas de ayuda a los conductores que controlan el freno, acelerador, conducción, velocidad y dirección de un vehículo son ejemplos de SDA semiautomatizados.

Big Data (macrodatos): hay muchas definiciones del “big data”, pero podemos por lo general pensarlos como conjuntos de datos extremadamente grandes que al ser analizados pueden revelar patrones, tendencias y asociaciones, entre ellos los que se refieren al comportamiento humano. La Big Data se caracteriza por las cinco V: el volumen, velocidad, variedad, veracidad y valor de los datos en cuestión. Este video ofrece una breve introducción a los macrodatos y al concepto de las cinco V.

Class label (etiqueta de clase): una etiqueta de clase se aplica después de que un sistema de aprendizaje automático ha clasificado sus insumos; por ejemplo, establecer si un correo electrónico es spam.

Deep learning (aprendizaje profundo): el aprendizaje profundo es una red neural de tres o más capas que intenta simular el comportamiento del cerebro humano, lo que permite “aprender” de grandes cantidades de datos. Este tipo de aprendizaje impulsa muchas aplicaciones de IA que mejoran la automatización, como los asistentes digitales, los controles remotos de TV activados por la voz, y la detección de fraudes con tarjetas de crédito.

Data mining: (minería de datos) la minería de datos, también conocida como descubrimiento de conocimientos en los datos, es el “proceso de analizar densos volúmenes de datos para encontrar patrones, descubrir tendencias y obtener ideas acerca de cómo podemos emplear los datos”.

La IA generativa[1]: la IA generativa es un tipo de modelo de aprendizaje profundo que puede generar texto, imágenes y otros contenidos de gran cantidad a partir de los datos de entrenamiento. Para mayor información consúltese la sección sobre IA generativa.

Label (etiqueta): una etiqueta es lo que un modelo de aprendizaje automático predice, como el futuro precio del trigo, el tipo de animal mostrado en una imagen, o el significado de un clip de audio.

Large language model (modelo grande de lenguaje): una modelo grande de lenguaje (LLM) es “un tipo de inteligencia artificial que emplea técnicas de aprendizaje profundo y conjuntos de datos masivamente grandes para entender, resumir, generar y predecir contenidos nuevos”. Un LLM es un tipo de IA generativa que ha sido construida específicamente para ayudar a generar contenidos basados en textos.

Model0: un modelo es la representación de lo que un sistema de aprendizaje automático ha aprendido de los datos de entrenamiento.

Red neural: una red neural biológica (BNN) es un sistema en el cerebro que permite sentir estímulos y responder a ellos. Una red neuronal artificial (ANN) es un sistema de computación inspirado por su contraparte biológica en el cerebro humano. En otras palabras, una ANN es “un intento de simular la red de neuronas que conforman un cerebro humano, de modo tal que la computadora pueda aprender y tomar decisiones en forma humana”. Las ANN de gran escala conducen varias aplicaciones de IA.

Perfilamiento: el perfilamiento involucra el procesamiento automatizado de datos para desarrollar perfiles a los cuales se puede usar para tomar decisiones sobre las personas.

Robot: los robots son artefactos programables automatizados. Los que son plenamente autónomos (v.g., los vehículos autónomos) son capaces de operar y tomar decisiones sin el control humano. La IA permite a los robots sentir cambios en su entorno y adaptar sus respuestas y comportamientos en conformidad a ello, para así efectuar tareas complejas sin la intervención humana.

Scoring (puntuación): la puntuación, también llamada predicción, es el proceso mediante el cual un modelo de aprendizaje automático entrenado genera valores a partir de nuevos datos ingresados. Los valores o puntajes que son creados pueden representar predicciones de valores futuros, pero podrían asimismo representar una categoría o resultado probables. Cuando se la usa en relación con personas, la puntuación es una predicción estadística que establece si una persona encaja dentro de una categoría o resultado. Por ejemplo, un puntaje crediticio es un número extraído de un análisis estadístico que representa la solvencia crediticia de una persona.

Supervised learning: en el aprendizaje supervisado, los sistemas de AA son entrenados a partir de datos bien etiquetados. Usando inputs y outputs etiquetados, el modelo puede medir su precisión y aprender con el paso del tiempo.

Aprendizaje no supervisado: el aprendizaje no supervisado emplea algoritmos de aprendizaje automático para así encontrar patrones en conjuntos de datos no etiquetados, sin necesidad de la intervención humana.

Entrenamiento: en el aprendizaje automático, el, entrenamiento es el proceso de establecer los parámetros ideales que un modelo comprende.

 

¿Cómo operan la inteligencia artificial y el aprendizaje automático?

Inteligencia artificial

La inteligencia artificial es un enfoque transdisciplinario que combina ciencias de la computación, lingüística, psicología, filosofía, biología, neurociencias, estadística, matemática, lógica y economía para “entender, modelar y replicar los procesos de inteligencia y cognitivos”.

Las aplicaciones de IA existen en todo ámbito, industria y en distintos aspectos de la vida cotidiana. Dado que la IA es tan amplia, resulta útil pensarla como estando conformada por tres categorías:

  • La IA restringida o inteligencia artificial restringida (ANI) es un sistema experto en una tarea específica, como el reconocimiento de imágenes, jugar Go, o pedirle a Alexa o Siri que respondan una pregunta.
  • La IA fuerte o inteligencia artificial general (IAG) es una IA que iguala la inteligencia humana.
  • La superinteligencia artificial (ASI) es una IA que supera la capacidad humana.

Las técnicas modernas de IA vienen desarrollándose rápidamente, y sus aplicaciones ya están generalizadas. Sin embargo, estas aplicaciones actualmente solo existen en el campo de la “IA restringida”. La inteligencia artificial general y la superinteligencia artificial aún no han sido alcanzadas, y probablemente no lo serán en los próximos años o décadas.

Aprendizaje automático

El aprendizaje automático es una aplicación de la inteligencia artificial. Si bien a menudo encontramos ambos términos usados de modo intercambiable, el primero es un proceso mediante el cual se desarrolla una aplicación de IA. El proceso de aprendizaje automático involucra un algoritmo que efectúa observaciones basadas en los datos, identifica patrones y correlaciones en ellos, y utiliza el patrón o correlación para efectuar predicciones. La mayor parte de la IA actualmente en uso está conducida por el aprendizaje automático.

Así como resulta útil dividir la IA en tres categorías, así también podemos pensar al aprendizaje automático como tres técnicas diferentes: aprendizaje supervisado; aprendizaje no supervisado; y aprendizaje profundo.

Aprendizaje supervisado

El aprendizaje supervisado categoriza eficientemente a los datos según definiciones preexistentes encarnadas en un conjunto de datos que contiene ejemplos de entrenamiento con etiquetas asociadas. Tomemos el ejemplo de un sistema de filtrado de spam, al cual se está entrenando usando correos electrónicos de spam y que no son spam. El “input” en este caso son todos los mensajes que el sistema procesa. Luego de que los humanos han marcado a ciertos mensajes como spam, el sistema los clasifica en otra carpeta. El “output” es la categorización de los mensajes. El sistema encuentra una correlación entre la etiqueta “spam” y las características de los mensajes, como el texto en el “Asunto”, las frases en el cuerpo del mensaje o la dirección de correo o IP del remitente. Usando esta correlación, el sistema intenta predecir la etiqueta correcta (spam/no spam) que aplicar a todos los futuros mensajes que procese.

En este caso, “spam” y “no spam” son denominadas “etiquetas de clase”. La correlación que el sistema halló se llama un “modelo” o “modelo predictivo”. Podemos pensar al modelo como un algoritmo que el sistema de AA genera automáticamente empleando datos. Los mensajes etiquetados a partir de los cuales el sistema aprende son llamados “datos de entrenamiento”. La variable objetivo es la característica que el sistema está buscando o de la cual quiere saber más, en este caso es la condición de spam de un mensaje. A la “respuesta correcta”, por así decirlo, en la categorización del mensaje se la denomina el “resultado deseado” o el “resultado de interés”.

Aprendizaje no supervisado

El aprendizaje no supervisado involucra el que las redes neuronales encuentren una relación o patrón sin tener acceso a conjuntos de datos previamente etiquetados de parejas de input-output. Las redes neurales organizan y agrupan los datos por cuenta propia, encontrando patrones recurrentes y detectando desviaciones de dichos patrones. Estos sistemas tienden a ser menos predecibles que los que usan conjuntos de datos etiquetados, y se les aplica más a menudo en entornos que pueden cambiar con cierta frecuencia y no son estructurados o lo están en parte. Algunos ejemplos son:

  1. Un sistema de reconocimiento óptico de caracteres que puede “leer” textos escritos a mano, aun cuando nunca haya visto dicha escritura antes.
  2. Los productos recomendados que un usuario ve en las páginas web de ventas al por menor. Estas recomendaciones podrían establecerse asociando al usuario con un gran número de variables tales como su historial de búsqueda, los artículos que ya ha comprado, la calificación que les ha dado, los que guarda en una lista de deseos, la ubicación del usuario, los artefactos que usa, las marcas que prefiere y el precio de sus compras previas.
  3. La detección de transacciones monetarias fraudulentas sobre la base de la fecha y la ubicación. Por ejemplo, si dos transacciones consecutivas tienen lugar en una misma tarjeta de crédito dentro de un lapso corto y en dos ciudades distintas.

Se usa una combinación de aprendizaje supervisado y no supervisado (lo que se conoce como “aprendizaje semisupervisado”) cuando se cuenta con un conjunto de datos relativamente pequeño y con etiquetas, para entrenar a la red neuronal para que actúe sobre otro conjunto más grande y sin etiquetas. Un ejemplo de aprendizaje semisupervisado es el software que crea deepfakes, o audio, videos o imágenes alterados digitalmente.

Aprendizaje profundo

El aprendizaje profundo emplea redes neuronales artificiales (ANN) de gran escala llamadas redes neuronales profundas para crear IA que pueda detectar fraudes financieros, efectuar análisis de imágenes médicas, traducir gran cantidad de texto sin intervención humana, y automatizar la moderación de contenido en las páginas de medios sociales. Estas redes neuronales aprenden a efectuar tareas empleando numerosas capas de procesos matemáticos, para así encontrar patrones o relaciones entre distintos puntos de datos en los conjuntos de datos. Un atributo clave del aprendizaje profundo es que estas ANN pueden leer detenidamente, examinar y clasificar cantidades inmensas de datos, lo cual en teoría les permite identificar nuevas soluciones a problemas ya existentes.

La IA generativa

La IA generativa[3] es un tipo de modelo de aprendizaje profundo que puede generar textos, imágenes u otros contenidos de gran calidad a partir de los datos de entrenamiento. El lanzamiento de, ChatGPT, el chatbot de OpenAI, a finales de 2022 llamó la atención sobre la IA generativa y desató una carrera entre las compañías para producir versiones alternativas (e idealmente superiores) de esta tecnología. El entusiasmo por los modelos grandes de lenguaje y otras formas de IA generativa también estuvo acompañado por una preocupación por la precisión, el sesgo dentro de dichas herramientas, la privacidad de los datos y cómo se podría usar estas herramientas para propagar la desinformación con mayor eficiencia.

Aunque hay otros tipos de aprendizaje automático, estos tres —el aprendizaje supervisado, el no supervisado y el aprendizaje profundo— representan las técnicas básicas usadas para crear y entrenar sistemas de IA.

Sesgos en la IA y el AA

La inteligencia artificial es construida por humanos y se la entrena con datos que ellos generan. Inevitablemente hay un riesgo de que los sesgos humanos individuales y sociales sean heredados por los sistemas de IA.

Hay tres tipos de sesgo comunes en los sistemas de computación:

  • Los sesgos preexistentes tienen su origen en las instituciones, prácticas y actitudes sociales.
  • El sesgo técnico se debe a limitaciones o consideraciones técnicas.
  • El sesgo emergente aparece en un contexto de uso.

El sesgo en la inteligencia artificial podría por ejemplo afectar la publicidad política que uno ve en la internet, el contenido movido a la cima de las noticias en las redes sociales, el costo de una prima de seguro, los resultados de la revisión en un proceso de reclutamiento, o la capacidad de pasar a través de los controles de frontera en otro país.

El sesgo en un sistema de computación es un error sistemático y repetible. Dado que el AA lidia con grandes cantidades de datos, hasta una tasa de error pequeña puede agravarse o magnificar, y afectar enormemente a los resultados del sistema. Una decisión que un sistema de AA tome, en particular aquellos que procesan conjuntos de datos gigantescos, a menudo es una predicción estadística. De ahí que su precisión esté relacionada con el tamaño del conjunto de datos. Es probable que los conjuntos de datos de entrenamiento más grandes produzcan decisiones que sean más precisas y reduzcan la posibilidad de error.

El sesgo en los sistemas de IA/AA pueden tener como resultado prácticas discriminatorias, lo que en última instancia llevaría a exacerbar las desigualdades ya existentes o a generar otras nuevas. Para mayor información consúltese este explicador relacionado con el sesgo de la IA y la sección Riesgos de este recurso.

Inicio

¿De qué modo la IA y el AA son relevantes en el espacio cívico y para la democracia?

Colmillos de elefante retratados en Uganda. Los algoritmos de IA/AA y los datos históricos pueden emplearse en la observación de la vida silvestre para predecir las incursiones de los cazadores furtivos. Crédito de la fotografía: NRCN.

La difundida proliferación, rápido despliegue, escala, complejidad e impacto de la IA sobre la sociedad es un tema de gran interés y preocupación para los gobiernos, la sociedad civil, las ONG, organizaciones de derechos humanos, empresas y el público en general. Los sistemas de IA podrían requerir de diversos grados de interacción humana o ninguna en. Cuando se les aplica en el diseño, la operación y el suministro de servicios, la IA/AA brindan el potencial de proveer nuevos servicios y mejorar la velocidad, focalización, precisión, eficiencia, consistencia, calidad o performance de los ya existentes. Pueden brindar nuevas ideas al hacer visibles conexiones, relaciones y patrones antes no descubiertos, y ofrecer nuevas soluciones. Al analizar grandes cantidades de datos, los sistemas de AA ahorran tiempo, dinero y esfuerzos. Algunos ejemplos de la aplicación de la IA/AA en diferentes ámbitos incluyen el uso de algoritmos de IA/AA y datos históricos en la conservación de la vida silvestre para predecir las incursiones de los cazadores furtivos, y para descubrir nuevas especies de virus.

Diagnóstico microscópico de la tuberculosis en Uzbekistán. Los sistemas de IA/AA ayudan a los profesionales del cuidado de la salud en el diagnóstico médico y en la detección de enfermedades. Crédito de la fotografía: USAID.

Las capacidades predictivas de la IA y su aplicación así como del AA en la categorización, organización, clustering y búsqueda de información han traído mejoras en muchos campos y ámbitos, entre ellos el cuidado de la salud, el transporte, la gobernanza, educación, energía y en evitar accidentes, así como en la seguridad, la prevención del crimen, la vigilancia policial, la aplicación de la ley, la gestión urbana y el sistema judicial. Por ejemplo, el AA puede usarse para seguir el progreso y la efectividad de los programas de gobierno y filantrópicos. Las administraciones de las ciudades, las de las ciudades inteligentes, inclusive, emplean el AA para analizar datos acumulados a lo largo del tiempo acerca del consumo de energía, la congestión de tráfico, los niveles de contaminación y los desechos, para así monitorear y administrar estas cuestiones e identificar patrones en su generación, consumo y manejo.

Mapas digitales creados en Mugumu, Tanzania. La inteligencia artificial puede apoyar la planificación del desarrollo de la infraestructura y la preparación para los desastres. Crédito de la fotografía: Bobby Neptune para DAI.

La IA también se usa en el monitoreo del clima, el pronóstico del tiempo, la predicción de desastres y peligros, y la planificación del desarrollo de la infraestructura. En el cuidado de la salud, los sistemas de IA ayudan a los profesionales en el diagnóstico médico, la cirugía asistida por robots, una detección más fácil de enfermedades, la predicción de brotes epidémicos, el rastreo de la(s) fuente(s) de la propagación de enfermedades y así sucesivamente. La policía y las agencias de seguridad emplean sistemas de vigilancia basados en la IA/AA, sistemas de reconocimiento facial, drones, y la vigilancia policial predictiva para la seguridad y protección de la ciudadanía. De otro lado, muchas de estas aplicaciones plantean preguntas acerca de la autonomía individual, la privacidad, seguridad, la vigilancia de masas, la desigualdad social y su impacto negativo sobre la democracia (véase la sección Riesgos).

Peces cogidos en la costa de Kema, Célebes septentrional, Indonesia. El reconocimiento facial se usa para identificar las especies de pescado y contribuir a las prácticas de pesca sostenible. Crédito de la fotografía: cortesía de USAID SNAPPER.

La IA y el AA tienen ambos implicaciones tanto positivas como negativas para las políticas públicas así como para las elecciones, y para la democracia de modo más amplio. Si bien es cierto que los datos pueden usarse para maximizar la efectividad de una campaña mediante mensajes focalizados que ayuden a persuadir a posibles votantes, también pueden emplearse para suministrar propaganda o desinformación a públicos vulnerables. Durante la campaña presidencial de EE.UU de 2016, por ejemplo, Cambridge Analytica utilizó big data y el aprendizaje automático para adaptar los mensajes a los votantes basándose en predicciones a su susceptibilidad a distintos argumentos.

Durante las elecciones del Reino Unido y de Francia en 2017 se usaron, bots políticos para propagar desinformación en las redes sociales y filtrar mensajes electrónicos de campaña privados. Estos bots autónomos están “programados para propagar agresivamente mensajes políticos unilaterales para fabricar así la ilusión del apoyo popular”, o incluso disuadir a ciertas poblaciones de sufragar. Los deepfakes (audios o videos que han sido fabricados o alterados), algo posible gracias a la IA, también contribuyen a propagar la confusión y falsedades acerca de los candidatos políticos y otros actores relevantes. Aunque la inteligencia artificial puede usarse para exacerbar y amplificar la desinformación, también se la puede aplicar en posibles soluciones a este reto. Véase en la sección de Estudios de caso de este recurso, los ejemplos de cómo la industria de verificación de hechos viene aprovechando la inteligencia artificial para identificar y desmentir con mayor efectividad las narrativas falsas y engañosas.

Los ciberatacantes que buscan alterar los procesos electorales emplean el aprendizaje automático para focalizar eficazmente a las víctimas y diseñar estrategias con las cuales vencer las ciberdefensas. Es cierto que estas tácticas pueden usarse para prevenir los ciberataques, pero el nivel de inversión en tecnologías de inteligencia artificial por parte de actores maliciosos supera en muchos casos al de los gobiernos legítimos u otras entidades oficiales. Algunos de estos actores también emplean herramientas de vigilancia digital impulsadas por la IA para seguir y focalizarse en figuras de la oposición, defensores de los derechos humanos y otros críticos identificados.

Como ya se ha examinado en otra parte de este recurso, “el potencial que los sistemas automatizados de toma de decisiones tienen para reforzar sesgos y la discriminación, también tiene un impacto sobre el derecho a la igualdad y la participación en la vida pública”. El sesgo dentro de los sistemas de IA puede dañar a las comunidades históricamente subrepresentadas y exacerbar las divisiones de género existentes, así como los daños en línea que experimentan las mujeres candidatas, políticas, activistas y periodistas.

Las soluciones impulsadas por la IA pueden ayudar a mejorar la transparencia y la legitimidad de las estrategias de campaña, por ejemplo al aprovechar los bots políticos para el bien al ayudar a identificar artículos que contienen desinformación, o brindando una herramienta con la cual recolectar y analizar las preocupaciones de los votantes. La inteligencia artificial puede asimismo usarse para hacer que el trazado de los distritos electorales sea menos partidario (aun cuando en algunos casos también facilita el gerrymandering partidario) y prevenir o detectar fraudes, así como errores administrativos significativos. El aprendizaje automático puede informar la incidencia política prediciendo qué partes de una ley serán aprobadas a partir de evaluaciones algorítmicas del texto de la ley, con cuántos auspiciadores o partidarios cuenta, e incluso en qué parte del año es presentada.

El impacto pleno que el despliegue de sistemas de IA habrá de tener sobre las personas, la sociedad y la democracia no es conocido ni cognoscible, lo cual crea muchos problemas legales, sociales, reguladores, técnicos y éticos. El tema del sesgo nocivo en la inteligencia artificial y su intersección con los derechos humanos y los derechos civiles ha sido motivo de preocupación para gobiernos y activistas. El Reglamento General de Protección de Datos (RGPD) de la Unión Europea cuenta con disposiciones acerca de la toma de decisiones automatizada, el perfilamiento inclusive. En febrero de 2020 la Comisión Europea presentó un libro blanco sobre la IA como precuela a una posible legislación que rigiera su uso en la UE, en tanto que otra de sus organizaciones hizo recomendaciones sobre el impacto de los sistemas algorítmicos en los derechos humanos. Alemania, Francia, Japón e India asimismo han esbozado estrategias de IA para las políticas y leyes. El físico Stephen Hawking una vez dijo, “…el éxito en la creación de la IA podría ser el más grande acontecimiento en la historia de nuestra civilización. Pero también podría ser el último, salvo que aprendamos cómo evitar los riesgos”.

Inicio

Oportunidades

La inteligencia artificial y el aprendizaje automático pueden tener impactos positivos cuando se los emplea para promover la democracia, los derechos humanos y el buen gobierno. Lea a continuación cómo reflexionar de modo más eficaz y seguro acerca de la inteligencia artificial y el aprendizaje automático en su trabajo.

Detecte y venza los sesgos

Aunque la inteligencia artificial, como ya vimos, puede reproducir los sesgos humanos, también puede ser usada para combatir los sesgos inconscientes en contextos tales como el reclutamiento laboral. Los algoritmos diseñados de modo responsable pueden sacar sesgos escondidos a la luz, y en algunos casos empujar a la gente hacia resultados menos sesgados, por ejemplo escondiendo el nombre, la edad y otras características en el currículum de los candidatos que activen los sesgos.

Mejorar la seguridad y protección

Los sistemas de IA pueden usarse para detectar ataques a la infraestructura pública, como un ciberataque o un fraude con tarjetas de crédito. A medida que el fraude en línea se vuelve más desarrollado, las compañías, gobiernos y personas deben poder identificarlo rápidamente, o incluso prevenir que se dé. El aprendizaje automático puede ayudar a identificar patrones ágiles e inusuales que igualan o superan las estrategias tradicionales usadas para evitar la detección.

Moderar contenidos en línea nocivos

Cada segundo se sube una cantidad enorme de contenido a la internet y a las redes sociales. Simplemente hay demasiados videos, fotos y publicaciones como para que los humanos puedan revisarlos manualmente. Las herramientas de filtrado, como los algoritmos y las técnicas de aprendizaje automático, son usadas por muchas plataformas de medios sociales para filtrar los contenidos que violan sus condiciones de servicio (como materiales de abuso sexual infantil, violaciones de copyright o spam). La inteligencia artificial está en efecto operando en su cuenta de correo electrónico, filtrando automáticamente los contenidos de marketing no deseados de su buzón principal. El reciente arribo de los deepfakes y otros contenidos generados por computadora requieren de tácticas de identificación igual de avanzadas. Los verificadores de información y otros actores que trabajan para reducir [sic: diffuse] el peligroso y engañoso poder de los deepfakes vienen desarrollando su propia inteligencia artificial para identificar a estos medios de comunicación como falsos.

Búsquedas en la web

Los motores de búsqueda operan con sistemas algorítmicos de ranking. Estos motores ciertamente no están libres de serios sesgos y defectos, pero nos permiten ubicar información en las vastas extensiones de la internet. Los motores de búsqueda en la web (como Google y Bing) o dentro de plataformas y páginas web (como las búsquedas dentro de Wikipedia o The New York Times) pueden mejorar sus sistemas algorítmicos de ranking empleando el aprendizaje automático para así favorecer los resultados de alta calidad que pueden ser beneficiosos para la sociedad. Por ejemplo, Google tiene una iniciativa para resaltar reportajes originales, que prioriza el primer caso de una noticia antes que las fuentes que vuelven a publicar la información.

Traducción

El aprendizaje automático ha hecho posibles unos avances realmente increíbles en la traducción. Por ejemplo, DeepL es una pequeña compañía de traducción automática que ha superado las capacidades traductoras hasta de las más grandes empresas tecnológicas. Otras compañías también han creado algoritmos de traducción que permiten a personas de todo el mundo traducir textos a su lengua preferida, o comunicarse en otras lenguas fuera de aquellas que conocen bien, lo que ha promovido el derecho fundamental del acceso a la información, así como el derecho a la libertad de expresión y a ser escuchado.

Inicio

Riesgos

El uso de tecnologías emergentes como la IA puede también generar riesgos para la democracia y en los programas de la sociedad civil. Lea a continuación cómo aprender a discernir los posibles peligros asociados con la inteligencia artificial y el aprendizaje automático en el trabajo de DR, así como de qué formas mitigar las consecuencias no intencionales, y también las intencionales.

Discriminación de grupos marginados

Hay varias formas en que la IA puede tomar decisiones que podrían generar la discriminación, entre ellas cómo se definen la “variable objetivo” y las “etiquetas de clase en el transcurso del proceso de etiquetado de los datos de entrenamiento; cuando se recogen los datos de entrenamiento; durante la selección de características; y cuando se identifican las proxies. Es asimismo posible configurar intencionalmente un sistema de IA para que discrimine a uno o más grupos. Este video explica de qué modo los sistemas de reconocimiento facial disponibles comercialmente, a los que se entrenó con conjuntos de datos sesgados racialmente, discriminan a las personas de piel oscura, a las mujeres y a las de género diverso.

La precisión de los sistemas de IA se basa en la forma en que el AA procesa el Big Data, lo cual a su vez depende del tamaño del conjunto de datos. Cuanto más grande sea, tanto más probable es que las decisiones del sistema sean más precisas. Sin embargo, es menos probable que las personas negras y la gente de color (PoC), los discapacitados, las minorías, los indígenas, la gente LGBTQ+ y otras minorías más estén representadas en un conjunto de datos debido a la discriminación estructural, el tamaño del grupo o a actitudes externas que impiden su participación plena en la sociedad. El sesgo en los datos de entrenamiento refleja y sistematiza la discriminación existente. Y dado que un sistema de IA es a menudo una caja negra, resulta difícil establecer por qué la IA toma ciertas decisiones acerca de ciertas personas o grupos, o probar concluyentemente que ha tomado una decisión discriminatoria. Resulta por ende difícil evaluar si ciertas personas fueron discriminadas debido a su raza, sexo, estatus marginal u otras características protegidas. Por ejemplo, los sistemas de IA usados en la vigilancia policial predictiva, la prevención del delito, la aplicación de la ley y el sistema de justicia penal son, en cierto sentido, herramientas para la evaluación del riesgo. Empleando datos históricos y algoritmos complejos generan puntajes predictivos que buscan indicar la probabilidad de que se cometa un delito, la ubicación y momento probables, y las personas que posiblemente estén involucradas. Cuando se depende de datos sesgados, o de estructuras de toma de decisiones sesgadas, estos sistemas pueden terminar reforzando estereotipos acerca de los grupos desfavorecidos, marginados o minoritarios.

Un estudio efectuado por la Royal Statistical Society señala que la “…vigilancia predictiva de los delitos relacionados con las drogas tuvo como resultado una vigilancia cada vez más desproporcionada de comunidades históricamente sobre-vigiladas… y en casos extremos, el contacto policial adicional generará oportunidades adicionales de violencia policial en áreas sobre-vigiladas. Cuando el costo de la vigilancia policial es desproporcionado en comparación con el nivel de los delitos, esto equivale a una política discriminatoria”. De igual modo, cuando las aplicaciones móviles para una navegación urbana segura o el software de puntaje crediticio, banca, seguros, cuidado de la salud y la selección de empleados y estudiantes universitarios depende de datos y decisiones sesgados, entonces reforzarán la desigualdad social y los estereotipos negativos y nocivos.

Los riesgos asociados con los sistemas de IA se exacerban cuando éstos toman decisiones o formulan predicciones que involucran a grupos vulnerables tales como los refugiados, o acerca de situaciones de vida o muerte, como en el caso del cuidado médico. Un informe de 2018 preparado por el Citizen Lab de la Universidad de Toronto anota: “Muchos [de los inmigrantes o de quienes buscan asilo] provienen de países asolados por la guerra que buscan protección de la violencia y la persecución. La naturaleza matizada y compleja de muchos refugiados y pedidos de asilo puede ser pasada por alto por estas tecnologías, lo cual provocará serias violaciones de los derechos humanos protegidos internacional y localmente, bajo la forma de sesgos, discriminación, violaciones de la privacidad, cuestiones del debido proceso y de justicia procesal, entre otros. Estos sistemas habrán de tener ramificaciones de vida o muerte para la gente común, muchas de las cuales están huyendo para salvar su vida”. En el caso de los usos médicos y de cuidado de la salud, lo que está en juego es particularmente alto puesto que una decisión errada tomada por el sistema de IA podría potencialmente poner vidas en riesgo, o alterar drásticamente la calidad de vida o el bienestar de las personas que se ven afectadas por ella.

Vulnerabilidades en la seguridad

Los hackers maliciosos y las organizaciones criminales pueden emplear los sistemas de AA para identificar vulnerabilidades y poner la mira en la infraestructura pública o en sistemas privados como la internet de las cosas (IdC) y los vehículos autónomos.

Si una entidad maliciosa pone la mira en los sistemas de IA empleados en la infraestructura pública, como las ciudades inteligentes, redes eléctricas inteligentes, instalaciones nucleares, instalaciones para el cuidado de la salud y los sistemas bancarios, entre otros “serán más difíciles de proteger, puesto que estos ataques probablemente se harán más automatizados y complejos, y el riesgo de los fallos en cascada resultará más difícil de predecir. Un adversario inteligente puede o bien intentar descubrir y explotar las debilidades ya existentes en los algoritmos, o sino crear uno al cual posteriormente podrá aprovechar”. El aprovechamiento puede darse, por ejemplo, mediante un ataque de envenenamiento, que interfiere con los datos de entrenamiento cuando se usa el aprendizaje automático. Los atacantes podrían asimismo “usar algoritmos de AA para identificar automáticamente vulnerabilidades y optimizar los ataques estudiando y aprendiendo en tiempo real acerca de los sistemas que tienen en la mira”.

Privacidad y protección de datos

El uso de sistemas de IA sin dispositivos de seguridad y mecanismos de reparación puede plantear muchos riesgos a la privacidad y la protección de datos. Las empresas y gobiernos recolectan inmensas cantidades de datos personales para así entrenar a los algoritmos de los sistemas de IA que brindan servicios o efectúan tareas específicas. Los delincuentes, gobiernos intolerantes y personas con intenciones malignas a menudo ponen la mira en estos datos para así tener un beneficio económico o político. Por ejemplo, de filtrarse los datos de salud captados de las aplicaciones de celulares inteligentes y aparatos vestibles conectados a la internet, podrían ser usados incorrectamente por agencias de crédito, compañías de seguros, brókeres de información, cibercriminales, etc. La cuestión no son solo las filtraciones, sino también los datos que la gente entrega voluntariamente sin control sobre cómo serán usados más adelante. Esto incluye lo que compartimos tanto con las compañías como con las agencias de gobierno. La violación o abuso de los datos no personales, como los datos anonimizados, las simulaciones, los datos sintéticos o las normas generalizadas de procedimientos, podrían también afectar los derechos humano.

Chilling effect (efecto inhibidor)

Los sistemas de IA usados para la vigilancia y protección, condenas penales, fines legales, etc., se convierten en una nueva vía para el abuso del poder por parte del Estado, para controlar a la ciudadanía y a los disidentes políticos. El temor al perfilamiento, la puntuación, la discriminación y la vigilancia digital omnipresente pueden tener un efecto inhibidor sobre la capacidad o la disposición de la ciudadanía a ejercer sus derechos o a expresarse. Muchas personas modificarán su comportamiento a fin de conseguir los beneficios de contar con un buen puntaje y de evitar las desventajas que se siguen de tener uno malo.

Opacidad (naturaleza de caja negra de los sistemas de IA)

Podemos interpretar la opacidad como ya sea la falta de transparencia, ya de inteligibilidad. Los algoritmos, el código del software, el procesamiento detrás de escena y el proceso mismo de toma de decisiones podrían no ser inteligibles para quienes no son expertos o profesionales especializados. Por ejemplo, en los asuntos legales o judiciales, las decisiones que un sistema de IA toma no viene con explicaciones, a diferencia de las de los jueces, quienes están obligados a justificar su orden legal o juicio.

Desempleo tecnológico

Los sistemas de automatización, los de IA/AA inclusive, vienen usándose cada vez más para reemplazar el trabajo humano en diversos ámbitos e industrias, eliminando así un gran número de empleos y generando un desempleo estructural (al cual se conoce como desempleo tecnológico). Con la introducción de los sistemas de IA/AA se perderán algunos tipos de trabajos, otros serán transformados, y aparecerán otros nuevos. Es probable que los nuevos trabajos requieran de habilidades específicas o especializadas que sean adaptables a dichos sistemas.

Pérdida de autonomía individual y de la condición de persona

El perfilamiento y la puntuación en la IA despiertan el temor de que las personas sean deshumanizadas y reducidas a un perfil o puntaje. Los sistemas de toma de decisión automatizados podrían afectar el bienestar, la integridad física y la calidad de vida. Esto afecta lo que constituye el consentimiento de una persona (o la falta del mismo), la forma en que se dio, comunicó y entendió el consentimiento, así como el contexto dentro del cual es válido. “[E]l debilitamiento de la base libre de nuestro consentimiento individual —ya sea mediante una distorsión total de la información o incluso con tan solo la ausencia de transparencia— pone en peligro las bases mismas de cómo expresamos nuestros derechos humanos y hacemos que otros rindan cuentas por su privación abierta (o incluso latente)”. – Human Rights in the Era of Automation and Artificial Intelligence

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que la inteligencia artificial y el aprendizaje automático tendrán en su entorno laboral, o si está considerando usar algunos aspectos de estas tecnologías como parte de su programación DRG:

  1. ¿La inteligencia artificial o el aprendizaje automático son una herramienta apropiada, necesaria y proporcional para usarla en este proyecto y con esta comunidad?
  2. ¿Quién está diseñando y supervisando la tecnología? ¿Pueden explicar lo que está sucediendo en las distintas etapas del proceso?
  3. ¿Qué datos están usándose para diseñar y entrenar la tecnología? ¿De qué modos podrían generar una tecnología sesgada o de funcionamiento defectuoso?
  4. ¿Qué razones tiene para confiar en las decisiones de la tecnología? ¿Entiende por qué está obteniendo cierto resultado, o podría acaso haber un error en algún lado? ¿Hay algo que no pueda ser explicado?
  5. ¿Confía en que la tecnología trabajará como se desea cuando la use con su comunidad y en su proyecto, en lugar de en un entorno de laboratorio (o uno teórico)? ¿Qué elementos de su situación podrían causar problemas o cambiar el funcionamiento de la tecnología?
  6. ¿Quién está analizando e implementando la tecnología de IA/AA? ¿Entienden la tecnología y son conscientes de sus posibles defectos y peligros? ¿Es posible que tomen decisiones sesgadas, ya sea por malinterpretar la tecnología o por alguna otra razón?
  7. ¿Con qué medidas cuenta para identificar y hacer frente a los sesgos potencialmente dañinos de la tecnología?
  8. ¿Con qué dispositivos de seguridad reguladores y mecanismos de reparación cuenta, para las personas que sostienen que la tecnología ha sido injusta o que ha abusado de ellos de algún modo?
  9. ¿Hay alguna forma de que su tecnología de IA/AA pueda perpetuar o incrementar las desigualdades sociales, incluso si los beneficios de su uso superan estos riesgos? ¿Qué hará para minimizar estos problemas y quedar alerta a ellos?
  10. ¿Está seguro de que la tecnología acata las normas y estándares legales relevantes, el RGPD inclusive?
  11. ¿Hay alguna forma de que esta tecnología pueda no discriminar a la gente por sí misma, pero que si pueda provocar discriminación o alguna otra violación de derechos, por ejemplo cuando se la aplica en contextos diferentes, o si se comparte con actores no capacitados? ¿Qué podría hacer para prevenir esto?

Inicio

Estudios de caso

Aprovechando la inteligencia artificial para promover la integridad de la información

eMonitor+, del Programa de las Naciones Unidas para el Desarrollo, es una plataforma que opera con IA y que ayuda a “escanear en línea las publicaciones de las redes sociales para identificar violaciones electorales, desinformación, discursos de odio, polarización política y pluralismo, así como violencia en línea contra las mujeres”. El análisis de datos facilitado por eMonitor+ permite a las comisiones electorales y las partes interesadas de los medios de comunicación “observar la prevalencia, la naturaleza y el impacto de la violencia en línea. La plataforma depende del aprendizaje automático para seguir y analizar contenidos en los medios digitales y generar representaciones gráficas para la visualización de datos. eMonitor+ ha sido utilizado por Asociación Civil Transparencia y Ama Llulla de Perú, para mapear y analizar la violencia y el discurso de odio digitales en los diálogos políticos, así como por la Comisión Supervisora de las Elecciones durante la elección parlamentaria libanesa de 2022, para monitorear las posibles violaciones electorales, los gasto de campaña y la desinformación. La Alta Comisión Nacional Electoral de Libia también empleó a eMonitor+ para monitorear e identificar en línea la violencia contra las mujeres durante las elecciones.

“Cómo los verificadores de información de Nigeria están usando la IA contra la desinformación electoral”

Cómo los verificadores de información de Nigeria están usando la IA contra la desinformación electoral”

Antes de la elección presidencial de Nigeria en 2023, Full Fact, la organización verificadora de información del RU, “ofreció su suite de inteligencia artificial —que consta de tres herramientas que trabajan simultáneamente para automatizar los prolongados procesos de verificación de la información— para así ampliar enormemente esta capacidad en Nigeria”. Según Full Fact, estas herramientas no buscan reemplazar a los verificadores humanos, sino más bien ayudarles en el monitoreo y revisión manuales, que toman demasiado tiempo, dándoles así “más tiempo para hacer las cosas en que son mejores: entender lo que importa en el debate público, cuestionar las afirmaciones, revisar datos, hablar con expertos y compartir sus hallazgos”. Las herramientas expandibles, que incluyen funciones de búsqueda, alertas y en vivo, permiten a los verificadores “monitorear páginas web de noticias, redes sociales y transcribir afirmaciones hechas en vivo en la TV o la radio, para así hallar afirmaciones que verificar”.

Monitoreando el desarrollo de los cultivos: Agroscout

Monitoreando el desarrollo de los cultivos: Agroscout

El creciente impacto del cambio climático podría reducir aún más el rendimiento de los cultivos, especialmente en las regiones del mundo de mayor inseguridad alimentaria. Y nuestros sistemas alimentarios son responsables por alrededor del 30% de las emisiones de gases de efecto invernadero. La startup israelí AgroScout imagina un mundo en donde los alimentos se cultivan de modo más sostenible. “Nuestra plataforma usa IA para monitorear el desarrollo de los cultivos en tiempo real, y así planear con mayor precisión las operaciones de procesamiento y manufactura entre regiones, cultivadores y criadores”, dijo Simcha Shore, fundador y CEO de AgroScout. ‘Al utilizar la tecnología de la IA, AgroScout detecta a pestes y enfermedades tempranamente, lo que permite a los granjeros aplicar tratamientos precisos que reducen el uso de agroquímicos hasta en 85%. Esta innovación ayuda a minimizar el daño ambiental provocado por los agroquímicos tradicionales, lo que hace una contribución positiva a las prácticas agrícolas sostenibles’”.

Aprendizaje automático para la paz

El Machine Learning for Peace Project (Proyecto Aprendizaje Automático para la Paz) busca entender cómo es que el espacio cívico viene cambiando en países de todo el mundo que usan técnicas de aprendizaje automático de última generación. Al aprovechar las últimas innovaciones en el procesamiento de lenguaje natural, el proyecto clasifica “un corpus enorme de noticias digitales en 19 tipos de ‘acontecimientos’ de espacio cívico y 22 tipos de acontecimientos de Resurgent Authoritarian Influence (RAI, influencia autoritaria renaciente), que captan los esfuerzos realizados por regímenes autoritarios para influir en los países en vías de desarrollo”. Entre los “acontecimientos” del espacio cívico que vienen siguiéndose están el activismo, los golpes, las actividades electorales, los cambios legales y las protestas. Los datos de los acontecimientos del espacio cívico se combinan con “datos económicos de alta frecuencia para identificar impulsores claves del espacio cívico y predecir cambios en los meses siguientes”. En última instancia, el proyecto espera servir como una “herramienta útil para los investigadores que buscan datos ricos y de alta frecuencia sobre los regímenes políticos, así como para los decisores de políticas y activistas que luchan para defender la democracia en todo el mundo”.

Seguridad alimentaria: detectando enfermedades en cultivos usando el análisis de imágenes

Seguridad alimentaria: detectando enfermedades en cultivos usando el análisis de imágenes

“Las enfermedades de plantas son una amenaza no solo para la seguridad alimentaria a escala global, sino que pueden además tener consecuencias desastrosas para los pequeños agricultores cuya subsistencia depende de cultivos saludables”. Como primer paso para complementar las soluciones existentes al diagnóstico de enfermedades con un sistema de diagnóstico asistido por celulares, los investigadores usaron un conjunto de datos público de 54,306 imágenes de hojas de plantas enfermas y saludables, para así entrenar una “red neural convolucional profunda” que identifique automáticamente 14 especies de cultivos diferentes y 26 enfermedades singulares (o su ausencia).

Inicio

Referencias

A continuación encontrará los trabajos citados en este recurso.

Recursos adicionales

Inicio

Categories

Automatización

¿Qué es la automatización?

Una trabajadora en la línea de ensamblaje de una fábrica de cableado de autos en Bizerta, Túnez. La automatización del trabajo afecta desproporcionadamente a las mujeres, los pobres y otros miembros vulnerables de la sociedad. Crédito de la fotografía. Photo credit: Alison Wright for USAID, Tunisia, Africa

La automatización involucra técnicas y métodos a los que se aplica para permitir que las máquinas, dispositivos y sistemas funcionen con poca o ninguna participación humana. Se la usa, por ejemplo, en aplicaciones para el manejo de los semáforos de una ciudad, navegar aviones, manejar y configurar distintos elementos de una red de telecomunicaciones, en cirugía asistida por robots, y hasta en la narración automatizada (que usa software de inteligencia artificial para crear relatos verbales). La automatización puede mejorar la eficiencia y reducir los errores, pero también crea nuevas oportunidades para éstos, e introduce nuevos costos y retos para los gobiernos y la sociedad.

¿Cómo funciona la automatización?

Los procesos pueden ser automatizados programando ciertos procedimientos para que se efectúen sin intervención humana (como un pago recurrente de una tarjeta de crédito o app del celular), o sino vinculando dispositivos electrónicos para que se comuniquen directamente entre sí (como los vehículos autónomos que se comunican con otros y con la infraestructura vial). La automatización puede involucrar el uso de sensores de temperatura y de luz, alarmas, microcontroladores, robots y más. La automatización del hogar puede, por ejemplo, incluir a asistentes para la casa como Amazon Echo, Google Home y OpenHAB. Algunos sistemas de automatización son virtuales, por ejemplo los filtros de correo electrónico que automáticamente clasifican los mensajes entrantes en distintas carpetas, y los sistemas de moderación del contenido en línea con IA.

La arquitectura y el funcionamiento exactos de los sistemas de automatización dependen de su finalidad y aplicación. Sin embargo no debiéramos confundir la automatización con la inteligencia artificial en donde un proceso liderado por un algoritmo ‘aprende’ y cambia en el tiempo: por ejemplo, un algoritmo que examina miles de solicitudes de empleo y aprende a partir de los patrones presentes en ellas está usando inteligencia artificial, en tanto que un chatbot que responde a las preguntas de los candidatos está usando la automatización.

Para mayor información acerca de los distintos componentes de los sistemas de automatización, lea también los recursos acerca de la Internet de las cosas y sensores, robots y drones, and biométrica.

Inicio

¿De qué modo es la automatización relevante en el espacio cívico y para la democracia?

Los procesos automatizados pueden construirse para que incrementen la transparencia, precisión, eficiencia y escala. Pueden ayudar a minimizar el esfuerzo (el trabajo) y el tiempo, reducir errores y costos, mejorar la calidad y/o la precisión en tareas/procesos, efectuar labores que son demasiado agotadoras, peligrosas o que caen más allá de las capacidades físicas de los humanos, y en general libera a éstos de tareas repetitivas y monótonas.

Desde una perspectiva histórica la automatización no es nueva: la primera revolución industrial en el siglo XVIII unció el poder del vapor y el agua; la revolución tecnológica de la década de 1880 se basó en ferrocarriles y telégrafos, y la revolución digital del siglo XX vio los inicios de la computación. Cada una de estas transiciones trajo consigo cambios fundamentales no sólo en la producción industrial y la economía, sino también en la sociedad, el gobierno y las relaciones internacionales.

Los procesos automatizados, cuando los gobiernos los emplean, prometen servicios estatales con mayor velocidad, eficiencia y cobertura. A esto a menudo se denomina e-gobierno, gobernanza electrónica o gobierno digital. El e-gobierno incluye las comunicaciones e información que el gobierno comparte en la red (a veces publicando hasta presupuestos y agendas gubernamentales), la facilitación de transacciones financieras en línea como el llenado electrónico de las declaraciones de impuestos, la digitalización de los historiales médicos, el sufragio electrónico y la ID digital.

La automatización puede además usarse en las elecciones para ayudar a contar los votos, registrar a los votantes y monitorear la participación electoral para así incrementar la confianza en la integridad del proceso democrático. Sin la automatización, el conteo de votos puede tomar semanas o meses, y podría llevar a que los resultados sean cuestionados por fuerzas antidemocráticas y a un posible desencanto de los votantes con el sistema democrático. El sufragio electrónico y el conteo automatizado de los votos ya ha quedado politizado en muchos países como Kazajistán y Pakistán, pero muchos países están adoptando cada vez más los sistemas de votación electrónicos para ayudar a incrementar la participación de los electores y acelerar el proceso electoral.

Un trabajador de salud recibe información acerca de un brote epidémico en Brewerville, Liberia. Los procesos automatizados prometen suministrar servicios estatales con mayor velocidad, eficiencia y cobertura. Crédito de la fotografía: Sarah Grile.

La automatización de los servicios gubernamentales genera numerosos beneficios, tal como lo explica el K4D helpdesk del RU al reducir el costo de la entrega del servicio, mejorar la calidad y la cobertura (por ejemplo, mediante la telemedicina o los drones), fortalecer las comunicaciones, el monitoreo y la retroalimentación, y en algunos casos alentando la participación ciudadana a nivel local. In Indonesia, por ejemplo, la Agencia del Servicio Civil (BKN) introdujo un sistema de pruebas asistido por computadora (CAT), para alterar el viejo sistema previo de prueba manual que generaba oportunidades desenfrenadas para la corrupción en el reclutamiento del servicio civil por parte de los funcionarios del ministerio. Con el nuevo sistema, la base de datos de preguntas está firmemente controlada y los resultados se publican en tiempo real fuera del centro de pruebas.

In India, se usa un sistema automatizado basado en una computadora diseñada específicamente (una Advanced Virtual RISC) y el estándar GSM (Global System for Mobile) usual de comunicaciones, para informar a los agricultores las condiciones exactas de los campos y señalar los siguientes pasos necesarios, con funciones de comando tales como el riego, arado, la utilización de semillas y el efectuar otras actividades agrícolas.

Dron usado para programar el riego en la parte meridional de Bangladés. Los sistemas automatizados tienen vastas aplicaciones en la agricultura. Crédito de la fotografía: Alanuzzaman Kurishi.

Al igual que las revoluciones industriales previas, la automatización cambia la naturaleza del trabajo y de no ser planificados cuidadosamente, dichos cambios podrían provocar el desempleo en ciertos sectores. Retirar a los humanos de los procesos trae consigo nuevas oportunidades para los errores (como el ‘sesgo de la automatización’) y plantea nuevas preguntas legales y éticas. Véase más adelante la sección Riesgos.

Inicio

Oportunidades

Centro de control de distribución de energía (PDC) de la Islamabad Electric Supply Company (IESCO), Pakistán. Los medidores inteligentes permiten monitorear la demanda y oferta energética, y el rechazo de carga en tiempo real. Crédito de la fotografía: USAID.

La automatización puede tener impactos positivos cuando se la usa para promover la democracia, los derechos humanos y las cuestiones de gobernanza. Lea a continuación cómo reflexionar de modo más eficaz y seguro acerca de la automatización en su trabajo.

Incremento en la productividad

La automatización puede mejorar el output al mismo tiempo que reduce el tiempo y trabajo requeridos, incrementando así la productividad de los trabajadores y la demanda de otros tipos de trabajo. Por ejemplo, ella puede optimizar la revisión de documentos, recortando el tiempo que los abogados necesitan para revisar los documentos o los académicos las fuentes, etc. En Azerbaiyán, el gobierno se asoció con el sector privado en el uso de un sistema automatizado para reducir el número pendiente de casos judiciales relativamente simples, como las demandas de cuentas impagas. Cuando la automatización incrementa la calidad de los servicios o bienes y/o reduce su costo, resulta posible cubrir una demanda más significativa de bienes o de servicios.

Mejoras en los procesos y outputs

La automatización puede mejorar la velocidad, eficiencia, calidad, consistencia y cobertura del suministro de un servicio y reducir los errores humanos, el tiempo invertido y los costos. Puede por ende hacer posible que las actividades crezcan en escala. Por ejemplo, el PNUD y el gobierno de las Maldivas la usaron para crear mapas en 3-D de las islas y graficar su topografía. Tener esta información registrada acelerará los esfuerzos de socorro y rescate en caso de desastres. El uso de drones también redujo el tiempo y el dinero requeridos para llevar a cabo esta labor: el mapeo de 11 islas usualmente tomaba casi un año, pero el uso de un dron redujo esto a un día. Véanse ejemplos adicionales en el recurso sobre Robots y drones.

Optimizar una tarea automatizada por lo general requiere de trade-offs entre el costo, la precisión, el margen de error permisible y la escala. A veces podría necesitar que toleremos más errores a fin de reducir así los costos o alcanzar una escala más grande. Para mayor información véase la sección “Knowing when automation offers a suitable solution to the challenge at hand (Saber cuándo la automatización ofrece una solución idónea para el problema a mano)” en Automation of government processes (Automatización de los procesos gubernamentales).

En el caso de los procesos democráticos, la automatización puede ayudar facilitando el acceso a los votantes que no pueden viajar a los centros de votación vía el voto electrónico remoto, o usando sistemas accesibles en dichos centros. Es más, el uso de la automatización en el conteo de los votos puede ayudar a disminuir los errores en algunos casos e incrementar la confianza en el proceso democrático.

Incremente la transparencia

La automatización puede incrementar la transparencia haciendo que los datos y la información estén fácilmente a disposición del público, construyendo así su confianza y ayudando a la rendición de cuentas. En la India, el Departamento Estatal de Transporte de Karnataka cuenta con centros de exámenes de conducir automatizados esperando así eliminar los sobornos en la emisión de las licencias de conductor. Una serie de cámaras de alta definición y sensores, colocados a lo largo de la pista de prueba, captan el movimiento del vehículo, en tanto que un sistema computarizado decide si el conductor ha aprobado la prueba o si ha sido reprobado. Véase también “Are emerging technologies helping win the fight against corruption in developing countries? (¿Las tecnologías emergentes están ayudando a combatir la corrupción en los países en vías de desarrollo?)”.

Inicio

Riesgos

El uso de las tecnologías emergentes puede también crear riesgos en los programas de la sociedad civil. Lea a continuación cómo discernir los posibles peligros asociados con la automatización en el trabajo DRG, así como de qué modo mitigar las consecuencias involuntarias y voluntarias.

Cuestiones laborales

Cuando la automatización se usa para reemplazar trabajadores humanos, la pérdida resultante de puestos de trabajo provoca un desempleo estructural al que se conoce como “desempleo tecnológico”. El desempleo estructural afecta de modo desproporcionado a las mujeres, los pobres y otros miembros vulnerables de la sociedad, salvo que sean vueltos a capacitar y se les brinde la protección adecuada La automatización además requiere de mano de obra calificada que pueda operar, supervisar o mantener sistemas automatizados, y eventualmente crea puestos para una parte más pequeño de la población. Pero el impacto inmediato de esta transformación laboral puede ser perjudicial para la gente y las comunidades que no tienen redes de seguridad social u oportunidades para encontrar otro trabajo.

Además se han establecido vínculos entre la creciente automatización y el alza en la preferencia por los políticos populistas, a medida que la pérdida de empleos comienza a afectar en particular a los trabajadores de bajos ingresos. Un estudio publicado en Proceedings of the National Academy of Sciences (PNAS) halló una correlación entre el impacto de la globalización y la automatización de un lado, y la creciente participación electoral de los partidos políticos populistas de derecha en varios países europeos del otro. Si bien la automatización puede tener un impacto positivo en la utilidad total, los trabajadores no educados y con bajos salarios podrían sentirse particularmente golpeados al mantenerse su salario bajo y sus labores ser reemplazadas con sistemas automatizados.

La discriminación de los grupos marginados y las minorías, y la creciente desigualdad social

Los sistemas automatizados equipados con inteligencia artificial (IA) pueden producir resultados que discriminan a algunos grupos marginados y minoritarios, cuando el sistema ha aprendido a partir de patrones de aprendizaje, conjuntos de datos o de una toma de decisiones humana sesgados. Los outputs de sistemas automatizados equipados con IA podrían reflejar sesgos sociales, prejuicios y un trato discriminatorio dado a ciertos grupos en la vida real. Los sesgos podrían también darse debido a la implementación humana de sistemas automatizados, por ejemplo cuando no funcionan en el mundo real como sí lo hicieron en un laboratorio o entorno teórico, o cuando los humanos que trabajan con las máquinas malinterpretan o usan incorrectamente la tecnología automatizada.

Hay numerosos ejemplos de discriminación, racial y de otro tipo, que fueron ya replicadas, ya magnificadas por la automatización. Para dar un ejemplo tomado del campo de la vigilancia policial predictiva, luego de efectuar una investigación en 2016 ProPublica reportó que COMPAS, una herramienta de IA basada en datos que buscaba asistir a los jueces de los EE.UU., estaba sesgada contra la población negra cuando establecía si un delincuente condenado cometería más delitos en el futuro. Para mayor información sobre la vigilancia policial predictiva véase “How to Fight Bias with Predictive Policing” (Cómo combatir el sesgo con la vigilancia policial predictiva”) y “A Popular Algorithm Is No Better at Predicting Crimes Than Random People (“Un algoritmo popular no predice mejor los delitos que personas aleatorias”).

Estos riesgos también existen en otros ámbitos. El informe titulado “Bots at the gate: A human rights analysis of automated decision-making in Canada’s immigration and refugee system” (“Bots en la puerta: un análisis de derechos humanos de la toma de decisiones automatizada en el sistema de inmigración y refugiados de Canadá”), publicado por la Universidad de Toronto y Citizen Lab, señala que “[m]uchos [de los que buscan asilo y de los migrantes] provienen de países asolados por la guerra y que buscan protección de la violencia y la persecución. La naturaleza matizada y compleja de muchos pedidos de refugio e inmigración se pierde en estas tecnologías, lo que genera serias violaciones de derechos humanos protegidos internacional y nacionalmente bajo la forma de sesgos, discriminación, violaciones de la privacidad, el debido proceso y de cuestiones de justicia procesal, entre otros Estos sistemas tendrán ramificaciones de vida o muerte para la gente común, muchos de los cuales están huyendo para salvar su vida”.

Protección legal insuficiente

Las leyes y regulaciones existentes podrían no ser aplicables a los sistemas de automatización, y allí donde sí lo son, la aplicación podría no estar bien definida. No todos los países cuentan con leyes que protegen a las personas de estos peligros. Según el RGPD (el Reglamento General de Protección de Datos europeo), las personas tienen el derecho a no quedar sujetas a una decisión basada únicamente en un procesamiento automatizado, lo que incluye el perfilamiento. En otras palabras, son humanos los que deben supervisar las decisiones importantes que afectan a las personas. Pero no todos los países tienen estas normas o las respetan, y ni siquiera el RGPD es hecho valer en todas las situaciones. Mientras tanto, las personas tienen que reclamar activamente sus derechos y cuestionar estas decisiones, usualmente buscando asistencia legal, lo que cae más allá de las posibilidades de muchos de ellos. Los grupos perjudicados por esta discriminación tienden a tener menos recursos y un acceso limitado a la protección de los derechos humanos, lo que les permitiría cuestionar tales decisiones.

Sesgos de la automatización

La gente tiende a tener fe en la automatización y a creer que la tecnología es precisa, neutral y que no discrimina. Podemos describir esto como el “sesgo de la automatización”: cuando los humanos que trabajan con o supervisan los sistemas automatizados tienen a ceder la responsabilidad a la máquina, y confían en su capacidad para tomar decisiones de modo acrítico. Se ha mostrado que el sesgo de la automatización tiene impactos perjudiciales en los sectores automatizados, lo que incluye la generación de errores en el cuidado de la salud. Este sesgo también tiene un papel en la discriminación descrita líneas arriba.

Preocupaciones éticas no exploradas

El uso cada vez más grande de la automatización genera interrogantes y preocupaciones éticas que podrían no haber sido consideradas antes del advenimiento de la tecnología misma. Por ejemplo, ¿quién es responsable si un vehículo autónomo participa en un accidente? ¿Cuánta información personal debiera darse a los proveedores del servicio de salud para facilitar su monitoreo automatizado? En muchos casos será necesario contar con más investigaciones antes de siquiera poder comenzar a abordar estos dilemas.

Cuestiones relacionadas con el consentimiento individual

Cuando los sistemas automatizados toman decisiones que afectan las decisiones de la gente borran la formación, el contexto y la expresión de su consentimiento (o la falta del mismo), tal como se describe en este pasaje: “…[E]l debilitamiento de la libre elección de nuestro consentimiento individual —ya sea a través de la distorsión abierta de la información, o incluso debido sólo a la ausencia de transparencia— pone en peligro las mismas bases de cómo expresamos nuestros derechos humanos y hacemos responsables a otros de su privación abierta (o incluso latente)”.Véase información adicional sobre el consentimiento informado en el recurso de Protección de datos.

Altos costos de capital

Las tecnologías de automatización a gran escala tienen costos de capital sumamente altos, lo cual es un riesgo en caso su uso no sea viable en el largo plazo, o que de algún otro modo no asegure retornos conmensurables o la recuperación de los costos. De ahí que los proyectos de automatización financiados con fondos públicos (por ejemplo, parte de la infraestructura de una “ciudad inteligente ”) necesitan contar con exhaustivos estudios de factibilidad que evalúen las necesidades y aseguren la viabilidad en el largo plazo. Por otro lado, el costo inicial podría también ser demasiado alto para las personas y las comunidades. Una planta automatizada de energía solar o un sistema de cosecha de agua de lluvia son una gran inversión para una comunidad. Pero el costo podría recuperarse, sin embargo, en el largo plazo, dependiendo de la tarifa de la energía de la red o del agua.

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que la automatización habrá de tener en su entorno laboral, o si está considerando usar algunos aspectos de ella como parte de sus programas de DRG:

  1. ¿Es la automatización un método idóneo para el problema que está intentando resolver?
  2. ¿Cuáles son los indicadores o factores rectores que determinan si la automatización es una solución idónea y requerida para un problema o reto particular?
  3. ¿Qué riesgos están involucrados con respecto a la seguridad, el potencial para la discriminación, etc.? ¿Cómo minimizará estos riesgos? ¿Los beneficios que tiene el uso de la automatización o una tecnología automatizada compensan estos riesgos?
  4. ¿Quién trabajará con estas tecnologías y las supervisará? ¿Cuál es su capacitación y cuáles sus responsabilidades? ¿Quién es legalmente responsable en caso de accidentes?
  5. ¿Cuáles son los efectos que el uso de estas tecnologías tiene a largo plazo en el entorno o comunidad circundantes? ¿Cuáles sus efectos sobre las personas, empleos, salarios, bienestar social, etc.? ¿Qué medidas son necesarias para asegurar que el uso de dicha tecnologías no agravará o reforzará la desigualdad debido al sesgo de la automatización o de algún otro modo?
  6. ¿Cómo se asegurará de que los humanos supervisen toda decisión importante hecha acerca de personas utilizando procesos automatizados? (¿Cómo acatará el RGPD o cualquier otra regulación aplicable?)
  7. ¿Qué salvaguardas de privacidad y seguridad serán necesarias para aplicar dichas tecnologías en un contexto dado con respecto a, por ejemplo, la ciberseguridad, la protección o la privacidad personal, el proteger a los operarios de accidentes, etc.? ¿Cómo incorporará dichas salvaguardias?

Inicio

Estudios de caso

Vehículos agrícolas automatizados

Vehículos agrícolas automatizados

“Las predicciones del incremento de la población mundial en las décadas venideras exige nuevos procesos productivos que sean más eficientes, seguros y menos destructivos para el medio ambiente. Las industrias vienen trabajando para cumplir esta misión desarrollando el concepto de la fábrica inteligente. El mundo agrícola debiera seguir el liderazgo de la industria y diseñar enfoques con los cuales implementar el concepto de la granja inteligente. Uno de los elementos más vitales a los que se debe configurar para satisfacer los requisitos de las nuevas granjas inteligentes, son los vehículos terrestres no tripulados (UGV)”.

Sistemas de votación automatizados en Estonia

Sistemas de votación automatizados en Estonia

Desde 2005, Estonia permite el voto electrónico, en donde los ciudadanos pueden emitir su sufragio en línea. En cada elección sucesiva, los votantes eligieron cada vez más sufragar en línea para ahorrar tiempo y participar en las elecciones nacionales y locales con facilidad. Ellos usan una ID digital que ayuda a verificar su identificación y prevenir el fraude; los sufragios emitidos en línea se cruzan automáticamente con los padrones para asegurar así que no haya ninguna duplicación o fraude de votantes.

Minería automatizada en África del Sur

Minería automatizada en África del Sur

“Los crecientes costos de mano de obra y energía están presionando el desempeño financiero de la minas de oro de África del Sur, pero la solución podría yacer en la adopción de tecnologías digitales. Al implementar operadores automatizados se puede poner fuera de peligro a los trabajadores subterráneos, lo que habrá de ser un imperativo cada vez mayor si se quiere que el capital internacional siga invirtiendo en los mineros de oro. Este énfasis creciente en la seguridad de la fuerza laboral y de las minas está motivando el desarrollo del mercado minero automatizado. Las técnicas anteriores y más viejas de exploración y perforación comprometían la seguridad de la fuerza laboral de las minas. Estos ejemplos han obligado a los operarios a diseñar resoluciones y herramientas inteligentes para así confirmar la seguridad de los trabajadores”.

Procesamiento automatizado de casos civiles no impugnados para reducir los casos acumulados en los juzgados de Azerbaiyán, estudio de caso 14

Procesamiento automatizado de casos civiles no impugnados para reducir los casos acumulados en los juzgados de Azerbaiyán, estudio de caso 14

“En Azerbaiyán, el gobierno diseñó un nuevo enfoque con el cual abordar sus propios casos acumulados, uno que abordaba elementos tanto del lado de la oferta como de la demanda. Advirtiendo que gran parte de lo acumulado se debía a simples casos civiles, como las demandas por cuentas impagas, el gobierno se asoció con el sector privado en el uso de un sistema automatizado para optimizar el manejo de los casos no impugnados, dejando así libre el tiempo de los jueces para los casos más importantes”.

Reformando el reclutamiento del Servicio Civil en Indonesia con exámenes computarizados, estudio de caso 6

Reformando el reclutamiento del Servicio Civil en Indonesia con exámenes computarizados, estudio de caso 6

“En Indonesia, la Agencia del Servicio Civil (BKN) logró introducir un sistema de evaluación asistido por computadoras (CAT), para así alterar el viejo sistema previo de pruebas manuales, el cual creaba oportunidades desenfrenadas para la corrupción en el reclutamiento del servicio civil por parte de los funcionarios del ministerio. Ahora la base de datos de preguntas se encuentra bien controlada y los resultados se publican en tiempo real fuera del centro de evaluaciones. Desde su lanzamiento en 2013, el CAT se ha convertido en el estándar de facto para más de 62 ministerios y agencias”.

Automatización en tiempo real de la agricultura de la India

Automatización en tiempo real de la agricultura de la India

“La “automatización en tiempo real del sistema agrario de la india” usando microcontroladores AVR (Advanced Virtual RISC y GSM (Global System for Mobile), está concentrado en hacer que el proceso agrícola sea más fácil con la ayuda de la automatización. La configuración consta de un procesador que es un microcontrolador de 8 bits. GSM tiene una parte importante al controlar el riego en el campo. Se le usa para recibir y enviar al agricultor los datos recogidos por los sensores. GSM actúa como puente conector entre el microcontrolador AVR y el granjero. Nuestro estudio busca implementar la aplicación básica de la automatización del riego en el campo programando los componentes y construyendo el hardware necesario. En nuestro estudio se usaron distintos tipos de sensores como LM35, un sensor de humedad del aire, otro de la humedad del suelo y un sensor IR usado para encontrar la condición precisa del campo. Se usa GSM para informarle al agricultor el estado exacto del campo, de modo tal que [pueda] tomar las medidas necesarias. Se usan comandos de AT(Atención) para controlar funciones tales como la irrigación, el arado, el uso de las semillas y el efectuar otras actividades agrícolas”.

El voto electrónico llega a su fin en Kazajstán

Un estudio publicado en mayo de 2020 acerca del abandono del voto electrónico en Kazajstán, resalta algunos de los retos políticos que lo rodean. Kazajstán lo empleó entre 2004 y 2011, y fue considerado un ejemplo destacado. Véase “Kazakhstan: Voter registration Case Study (2006)” que fuera producido por la Ace Project Electoral Knowledge Network. Sin embargo, el país retornó a las cédulas de papel tradicionales debido a la falta de confianza que la ciudadanía y la sociedad civil tenían, en la capacidad del gobierno para asegurar la integridad de los procedimientos de votación electrónicos. Véase “Politicization of e-voting rejection: reflections from Kazakhstan,” de Maxat Kassen. Es importante señalar que Kazajstán no utilizó la votación biométrica, sino más bien máquinas de votación electrónicas que funcionaban mediante pantallas táctiles.

Inicio

Referencias

Recursos adicionales

Inicio

Categories

Big Data

¿Qué es el big data?

El “big data” o macrodatos son también datos, pero que involucran cantidades mucho más grandes de los que usualmente pueden manejarse con una computadora personal o una base de datos tradicional. No son inmensos sólo en volumen, sino que además crecen exponencialmente con el tiempo. Son tan grandes y complejos que ninguna de las herramientas tradicionales de manejo de datos puede almacenarlos o procesarlos eficientemente. Si tiene una cantidad de datos a la cual puede procesar en su computadora o la base de datos de su servidor acostumbrado sin que se cuelguen, entonces probablemente no está trabajando con “big data”.

¿Cómo funciona el big data?

El campo del big data fue evolucionado a medida que la capacidad de la tecnología para captar constantemente información se disparaba. Usualmente se los capta en tiempo real y sin que ningún ser humano los ingrese a una base de datos: en otras palabras, son captados “pasivamente” por dispositivos digitales.

La internet brinda oportunidades infinitas para recoger información, que va de la llamada metainformación o metadatos (ubicación geográfica, dirección de IP, hora, etc.) a información más detallada acerca del comportamiento de los usuarios. Ésta a menudo proviene de medios sociales en línea o del comportamiento de compras con tarjetas de crédito. Las cookies son una de las principales formas en que los navegadores de internet pueden recoger información acerca de los usuarios: son esencialmente pequeños pedazos de datos guardados en ellos, o pequeños retazos de memoria acerca de algo que ha hecho en una página. (Para mayor información sobre las cookies visite este recurso).

También se pueden armar conjuntos de datos a partir de la Internet de las cosas, lo que involucra sensores conectados a otros dispositivos y redes. Por ejemplo, los semáforos equipados con sensores pueden recoger información del tráfico que luego se analizará para optimizar su flujo. La recolección de datos a través de sensores es un elemento común de la infraestructura de una ciudad inteligente.

Trabajadoras del cuidado de salud en Indonesia. El uso del big data puede mejorar los sistemas de salud e informar sus políticas públicas. Crédito de la fotografía: cortesía de USAID EMAS.

El big data puede también constar de datos médicos o científicos como la información del ADN, u otra relacionada con brotes epidémicos. Esto podría ser útil para las organizaciones humanitarias y de desarrollo. Por ejemplo, para entender mejor la enfermedad y predecir futuros brotes, UNICEF combinó datos provenientes de varias fuentes durante el brote del ébola en África occidental entre 2014 y 2016, entre ellos cálculos demográficos, información sobre viajes aéreos, cálculos de movilidad regional a partir de registros de teléfonos celulares y los lugares etiquetados en las redes sociales, datos sobre la temperatura, y los datos de casos de los informes de la OMS.

El big data es creado y usado por diversos actores. En las sociedades movidas por datos, se alienta a la mayoría de los actores (el sector privado, los gobiernos y otras organizaciones) a que recojan y analicen datos para observar patrones y tendencias, midan el éxito o el fracaso, optimicen sus procesos en pos de la eficiencia, etc. No todos los actores crearán ellos mismos los conjuntos de datos; a menudo recogerán datos públicamente disponibles o incluso se los comprarán a compañías especializadas. Por ejemplo, en la industria de la publicidad, los brókers de información (data brokers) se especializan en recolectar y procesar información acerca de los usuarios de internet, la que luego venden a los publicistas. Otros actores crearán sus propios conjuntos de datos, como las compañías eléctricas, ferroviarias o de vehículos compartidos, y los gobiernos. Los datos están en todos lados y son numerosos los actores capaces de recogerlos inteligentemente y analizarlos.

Inicio

¿De qué modo es relevante el big data para el espacio cívico y la democracia?

En Tanzania, una plataforma de código abierto permite al gobierno y las instituciones financieras registrar todas las transacciones de tierra y crear un conjunto de datos completo. Crédito de la fotografía: Riaz Jahanpour para USAID / Digital Development Communications.

Los analistas están encontrando formas de convertir el big data en un valioso recurso para la planificación y toma de decisiones, desde predecir elecciones presidenciales hasta ayudar a los pequeños agricultores a enfrentar el cambio climático o predecir brotes epidémicos. El big data es capaz de darle a la sociedad civil poderosas percepciones y la capacidad para compartir información vital. Las herramientas del big data han sido aplicadas recientemente en el espacio cívico en varias formas interesantes, por ejemplo para:

  • monitorear elecciones y apoyar a gobiernos abiertos (comenzando en Kenia con Ushahidi en 2008)
  • monitorear epidemias como el ébola en Sierra Leona y otros países del África occidental
  • seguir las muertes relacionadas con conflictos en todo el mundo
  • entender el impacto de los sistemas de ID sobre los refugiados en Italia
  • medir y predecir el éxito y la distribución agrícolas en Latinoamérica
  • avanzar en nuevos descubrimientos en genética y el tratamiento del cáncer
  • usar los sistemas de información geográfica (aplicaciones de mapeo de SIG) en una serie de contextos, entre ellos la planificación del crecimiento urbano y la sostenibilidad del flujo de tráfico, tal como lo hiciera el Banco Mundial en diversos países de Asia del Sur y Oriental, África y el Caribe

El uso del big data que se recoge, procesa y analiza para mejorar los sistemas de salud o la sostenibilidad ambiental, por ejemplo, puede en definitiva beneficiar enormemente a las personas y a la sociedad. Varias preocupaciones y advertencias han surgido, sin embargo, con respecto a su uso. Priman las preocupaciones por la privacidad y la seguridad puesto que el big data a menudo se capta sin que seamos conscientes y se le usa en formas a las cuales podríamos no haber consentido, y a veces se le vende varias veces a través de una cadena de distintas compañías con las cuales jamás hemos interactuado, exponiendo así los datos a riesgos de seguridad tales como su filtración. Es crucial que tengamos en cuenta que los datos anónimos pueden también usarse para “reidentificar” a las personas representadas en el conjunto de datos —se alcanza un 85% de exactitud usando apenas el código postal, el género y la fecha de nacimiento—, lo que posiblemente los pone en riesgo (véase más adelante el examen de la “reidentificación”).

Hay también poderosos desequilibrios (divisorias) entre quiénes están representados en los datos y quiénes tienen el poder para usarlos. Los que logran extraer valor al big data son a menudo grandes compañías u otros actores que cuentan con los medios financieros y la capacidad para recoger (a veces comprar), analizar y entender los datos.

Esto quiere decir que las personas y grupos cuya información es colocada en los conjuntos de datos (compradores cuyos datos de su tarjeta de crédito son procesados, usuarios de internet cuyos clics quedan registrados en una página web) en general no se benefician con los datos que han dado. Por ejemplo, los que se refieren a qué artículos adquieren los compradores en una tienda, se usan muy probablemente para maximizar las utilidades antes que para ayudarles con sus decisiones de compra. La forma extractiva en que los datos son tomados de comportamientos individuales y usados para lucrar ha sido llamada “capitalismo de vigilancia“, y hay quienes piensan que está minando la autonomía personal y erosionando la democracia.

Debemos también considerar la calidad de los conjuntos de datos, puesto que quienes los usan podrían no saber dónde o cómo fueron recogidos, procesados o integrados con otros datos. Y cuando el big data se guarda y transmite, las preocupaciones de seguridad se multiplican debido al creciente número de máquinas, servicios y socios involucrados. Es asimismo importante tener en cuenta que los grandes conjuntos de datos no son en sí mismos inherentemente útiles, pero lo son conjuntamente con la capacidad para analizarlos y extraer información de ellos empleando avanzados algoritmos, modelos estadísticos, etc.

Por último pero no menos importante, es que hay cruciales consideraciones a tener en cuenta con respecto a la protección de los derechos fundamentales de aquellos cuya información aparece en los conjuntos de datos. La información sensible, que permite o podría permitir identificar personas, podría ser utilizada por otras partes o con otros fines fuera de los deseados, en detrimento de las personas involucradas. Esto se explora a continuación en la sección Riesgos, así como en los restantes manuales.

Protegiendo el anonimato de quienes figuran en el conjunto de datos

Todo aquel que haya investigado en las ciencias sociales o médicas debiera estar familiarizado con la idea de que cuando se recogen datos sobre sujetos humanos, es importante proteger su identidad para que así no enfrenten consecuencias negativas por haber estado involucrados con la investigación, como por ejemplo que se sepa que tienen una enfermedad particular, que votaron de tal o cual modo, que participan de un comportamiento estigmatizado, etc. (Véase el recurso Protección de los datos). Las formas tradicionales de proteger la identidad —retirando cierta información identificadora, o sólo reportando estadísticas agregadas— pueden y debieran también usarse cuando se manejan los grandes conjuntos de datos para así ayudar a proteger a quienes figuran en ellos. También pueden esconderse los datos de múltiples modos para proteger la privacidad: los métodos incluyen la encriptación (codificación), tokenización y el enmascaramiento de los datos. Talend identificó las fortalezas y las debilidades de las estrategias primarias con que esconder los datos usando estos métodos.

La posibilidad de que se dé la reidentificación es uno de los más grandes peligros involucrados en el uso de grandes conjuntos de datos: establecer la identidad real de las personas en el conjunto, incluso cuando su información personal ha sido escondida o retirada. Para dar una idea de cuán fácil sería identificar a las personas en un gran conjunto de datos, un estudio halló que usando apenas tres campos de información —el código postal, el género y la fecha de nacimiento— se podía identificar al 87% de los estadounidenses individualmente, y luego conectar su identidad a bases de datos públicamente disponibles que contienen historiales médicos. Con más puntos de datos, los investigadores demostraron la capacidad casi perfecta de identificar a las personas de un conjunto: con cuatro piezas aleatorias de los datos en los registros de las tarjetas de crédito se podría alcanzar una tasa de identificación de casi 90%, y los investigadores lograron identificar personas con 99.98% de precisión usando 15 puntos de datos.

Diez reglas simples para la investigación responsable de big data, tomadas de un paper del mismo nombre de Zook, Barocas, Boyd, Crawford, Keller, Gangadharan, et al, 2017

  1. Reconozca que los datos son personas y que pueden hacer daño. La mayoría de los datos representan a personas o las afectan. Simplemente partir del supuesto de que todos los datos son personas hasta que se demuestre lo contrario, pone en primer plano la dificultad que hay para disociar los datos de personas específicas.
  2. Reconozca que la privacidad es algo más que un valor binario. La privacidad podría ser más o menos importante para las personas a medida que pasan por distintos contextos y situaciones. Ver los datos en bruto de alguien podría tener distintas implicaciones para su privacidad que si vemos un solo registro. La privacidad podría ser importante para grupos de personas (digamos, por sector demográfico) así como para particulares.
  3. Cuide la reidentificación de sus datos. Sea consciente de que datos al parecer inocuos e inesperados, como el uso de la batería del celular, podrían usarse para reidentificarlos. Planee para asegurarse de que la forma en que comparte y reporta los datos reduce el riesgo de que las personas puedan ser identificadas.
  4. Practique un compartir datos que sea ético. Podría haber ocasiones en que los participantes en su conjunto de datos esperan que usted los comparta (por ejemplo, con otros investigadores médicos que buscan una cura), y otros en que confían en que no lo haga. Sea consciente de que otros datos identificadores de sus participantes podrían ser recogidos, vendidos o compartidos en otro lugar, y que combinarlos con los suyos podría identificarlos individualmente. Tenga claro cómo y cuándo compartirá los datos y sea responsable por la protección de la privacidad de las personas cuyos datos recoge.
  5. Tenga en cuenta las fortalezas y limitaciones de sus datos; grande no quiere decir mejor automáticamente. Entienda de dónde viene su gran conjunto de datos y cómo podría evolucionar en el tiempo. No sobreestime sus hallazgos y reconozca que podrían ser desordenados o tener significados múltiples.
  6. Debata las duras opciones éticas. Hable con sus colegas acerca de estas preocupaciones éticas. Siga el trabajo de organizaciones profesionales para mantenerse al día con estos motivos de preocupación.
  7. Diseñe un código de conducta para su organización, comunidad de investigadores o industria, e involucre a sus pares en su creación, para así asegurar la inclusión de perspectivas inesperadas o subrepresentadas.
  8. Diseñe sus datos y sistemas para que sean auditables. Esto fortalece la calidad de su investigación y servicios, así como para dar una advertencia temprana de los usos problemáticos dados a los datos.
  9. Aborde las consecuencias más amplias de los datos y las prácticas de análisis. Cuando planee su colección de big data, tenga en cuenta la igualdad social, el impacto medioambiental de su procesamiento y otros impactos que haya sobre toda la sociedad.
  10. Sepa cuándo romper estas normas. Teniendo al debate, el código de conducta y la auditabilidad como guías, considere que en el caso de una emergencia de salud pública u otro desastre podría ser posible que haya razones para dejas las normas de lado.

Consiguiendo el consentimiento informado

Quienes proporcionan sus datos podrían no ser conscientes en ese entonces de que éstos podrían ser vendidos posteriormente a brókeres de información, quienes a su vez podrían luego revenderlos.

Infortunadamente, los formularios de consentimiento de privacidad de los datos son en general difíciles de leer para la persona media, incluso después de la ampliación de las salvaguardas de la privacidad tras el Reglamento General de Protección de Datos (GRPD ) Los términos y condiciones de uso (documentos de ToS) son tan notoriamente difíciles de leer, que un cineasta incluso hizo un documental sobre el tema. Los investigadores que han estudiado las políticas de los términos de servicio y privacidad hallaron que los usuarios por lo general los aceptan sin leer porque son demasiado largos y complejos. De otro lado, los que necesitan acceder a una plataforma o servicio por razones personales (por ejemplo, para mantenerse en contacto con un pariente) o para su subsistencia (para entregar sus productos a los consumidores) podrían no poder simplemente rechazar los ToS cuando no cuentan con una alternativa viable o inmediata.

Se viene efectuando un trabajo importante para intentar proteger a los usuarios de las plataformas y servicios de estos tipos de situaciones abusivas de compartir datos. Por ejemplo, el Usable Privacy and Security Laboratory de Carnegie Mellon (CUPS) ha diseñado mejores prácticas para informar a los usuarios acerca de cómo podrían usarse sus datos. Esto ha tomado la forma de
etiquetas de nutrición” de privacidad de los datos similares a las etiquetas de nutrición alimenticia especificadas por la FDA, y que tienen como base las evidencias.

En Chipata, Zambia, una vecina extrae agua de un pozo. El big data ofrece valiosa información para el diseño de soluciones al cambio climático. Crédito de la fotografía: Sandra Coburn.

Inicio

Oportunidades

El big data puede tener impactos positivos cuando se usa para promover la democracia, los derechos humanos y los temas de gobernanza. Lea a continuación cómo aprender a pensar de modo más eficaz y seguro acerca del big data en su trabajo.

Mayor conocimiento

Los grandes conjuntos de datos presentan parte de la información más rica y exhaustiva con que se ha contado en toda la historia humana. Los investigadores que los usan tienen acceso a información de una población enorme. Esto puede ser mucho más útil y conveniente que los datos autorreportados o los que fueron recogidos por estudios observacionales de difícil logística. Un trade-off importante se da entre la riqueza del conocimiento ganado mediante datos autorreportados o recolectados con sumo cuidado, contra la capacidad para generalizar los conocimientos obtenidos a partir del big data. Este último, al que se recoge de las actividades en redes sociales o por sensores, podría también permitir la medición en tiempo real de una actividad a gran escala. Lo que se obtiene del big data es sumamente importante en el campo de la logística. Por ejemplo, el Servicio Postal de los Estados Unidos recoge datos de todas sus entregas de paquetes usando GPS y vastas redes de sensores y otros métodos de seguimiento, y luego los procesa con algoritmos especializados. Esto les permite optimizar sus entregas para la sostenibilidad medioambiental.

Mayor acceso a los datos

Hacer que los grandes conjuntos de datos sean públicamente disponibles podría comenzar a cerrar las brechas en el acceso a los datos. Fuera de algunos conjuntos de datos públicos, el big data usualmente termina siendo propiedad de corporaciones, universidades y otras grandes organizaciones. Aunque los datos producidos son acerca de personas individuales y su comunidad, dichas personas y comunidades podrían no tener el dinero o la capacidad técnica para acceder a ellos y hacer un uso productivo de los mismos. Esto genera el riesgo de que las brechas digitales empeoren.

Los datos públicamente disponibles han ayudado a las comunidades, entre otras cosas, a entender la corrupción gubernamental, asuntos municipales, abusos de los derechos humanos y crisis de salud, y actuar en conformidad a ello. Pero una vez más resulta particularmente importante asegurar, cuando los datos se hagan públicos, una sólida privacidad para aquellos cuyos datos figuran en el conjunto de datos. El trabajo del proyecto Our Data Bodies brinda una guía adicional sobre cómo tratar a las comunidades cuyos datos figuran en estos conjuntos. Los materiales de sus talleres podrían apoyar la comprensión y participación de la comunidad en la toma de decisiones éticas acerca de la recolección y procesamiento de datos, y de cómo monitorear y auditar las prácticas seguidas con ellos.

Inicio

Riesgos

El uso de tecnologías emergentes para recoger datos también puede crear riesgos en los programas de la sociedad civil. Lea a continuación cómo discernir los posibles peligros asociados con la recolección del big data y su uso en el trabajo de DRG, así como de qué modos mitigar las consecuencias involuntarias y voluntarias.

Vigilancia

Dado el potencial para la reidentificación, así como la naturaleza y los objetivos de algunos usos dados al big data, corremos el riesgo de que las personas incluidas en un conjunto de datos sean sometidas a vigilancia por los gobiernos, los cuerpos policiales o las corporaciones. Esto podría poner en peligro los derechos fundamentales y la seguridad de quienes figuran en el conjunto de datos.

El gobierno chino es criticado constantemente por la vigilancia invasiva de sus ciudadanos mediante la recolección y procesamiento del big data. Más específicamente se le ha criticado por su sistema de ranking social de los ciudadanos sobre la base de sus redes sociales, datos de compras y educativos, así como por la recolección recolección revelaciones aque Edward Snowden hiciera acerca de la recolección y uso de datos de redes sociales y otros más por parte de la Agencia de Seguridad Nacional de los EE.UU., fue una de las primeras advertencias públicas acerca del potencial que el big data tiene para la vigilancia. También son motivo de preocupación las sociedades involucradas en el desarrollo del sistema de ID biométrico de la India, una tecnología cuyos productores están ansiosos por venderla a otros países. En los Estados Unidos, los defensores de la privacidad han manifestado su preocupación por las compañías y gobiernos que adquieren datos a escala acerca de los estudiantes usando los dispositivos que sus centros educativos les dan, preocupación esta que también debiera ser planteada en cualquier contexto internacional en que se dan laptops o celulares a los alumnos.

Debemos enfatizar que la preocupación por la vigilancia no queda limitada a las instituciones que originalmente recogieron los datos, trátese de gobiernos o de corporaciones. Es posible, cuando los datos son vendidos o combinados con otros conjuntos de datos, que otros actores, desde estafadores por correo electrónico a parejas abusivas, accedan a los datos y sigan, exploten o dañen de algún otro modo a las personas que figuran en el conjunto de datos.

Preocupación por la seguridad de los datos

El big data presenta retos significativos para la seguridad porque se le recoge, limpia y combina a través de largos y complejos pipelines de software y almacenaje. Estos retos se multiplican cada vez que los datos son compartidos entre muchas organizaciones. Todo flujo de datos que llega en tiempo real (por ejemplo, información acerca de personas que ingresan a un hospital) necesitará ser protegido específicamente de su manipulación, alteración o vigilancia. Es importante asegurarse de que se destinen suficientes recursos a la seguridad, puesto que los datos pueden constituir un riesgo significativo para la privacidad y la seguridad de quienes están incluidos en estos conjuntos, y son sumamente valiosos para los delincuentes.

Las herramientas de seguridad existentes para páginas web no bastan para cubrir todo el pipeline del big data. Se necesitan grandes inversiones en personal e infraestructura para brindar una cobertura de seguridad apropiada y responder a las filtraciones de datos. E infortunadamente en la industria faltan los especialistas en big data, en particular el personal de seguridad familiarizado con los retos singulares que éste presenta. Los sensores de la Internet de las cosas constituyen un riesgo particular cuando forman parte de un pipeline de recolección de datos; estos dispositivos son notorios por contar con seguridad deficiente. Por ejemplo, un actor malicioso podría fácilmente introducir sensores falsos en la red, o rellenar el pipeline de recolección con datos basura para así hacer que su recolección de datos sea inútil.

Expectativas exageradas de precisión y objetividad

Las compañías de big data y sus promotores a menudo afirman que éste puede ser más objetivo o preciso que los datos reunidos de modo tradicional, supuestamente porque el juicio humano no interviene y porque la escala a la cual se le reúne es más rica. Este cuadro resta importancia al hecho que los algoritmos y el código informático también aplica el juicio humano a los datos, lo que incluye sesgos y datos que podrían ser excluidos accidentalmente. Además, la interpretación humana es siempre necesaria para encontrarle el sentido a los patrones del big data, de modo tal que las pretensiones de objetividad debieran, una vez más, tomarse con un saludable escepticismo.

Para evitar caer en la trampa de asumir que el big data es “mejor”, es importante que hagamos preguntas acerca de los métodos de recolección de datos, los algoritmos involucrados en el procesamiento y los supuestos o inferencias de los recolectores/programadores de los datos y sus análisis. Por ejemplo, los datos acerca de la cercanía de dos teléfonos celulares le dicen que dos personas estuvieron cerca la una de la otra, pero sólo la interpretación humana podría decirle por qué razón lo estaban. La forma en que un analista interpreta dicha cercanía podría diferir de lo que las personas que tienen los celulares podrían decirle. Por ejemplo, este es un gran reto cuando usamos los teléfonos para “rastrear contactos” en epidemiología. Durante la crisis sanitaria del COVID-19, fueron muchos los países que se apresuraron en construir apps para celulares que rastrearan los contactos. Sus fines y funcionamiento precisos varían ampliamente (al igual que su efectividad), pero vale la pena indicar que las principales empresas tecnológicas prefirieron referirse a ellas como apps para “notificar el riesgo de exposición” antes que como de rastreo de contactos: esto se debe a que sólo pueden decir si se ha estado cerca de alguien con coronavirus, no si se lo ha contraído o no.

Malinterpretación

Hay dificultades a la hora de interpretar y extraer conclusiones, al igual que sucede con todos los datos. Dado que el big data a menudo es captado y analizado en tiempo real, podría ser particularmente débil al proporcionar el contexto histórico de los patrones actuales que está resaltando. Todo aquel que analice big data debiera asimismo considerar cuál o cuáles fueron sus fuentes, si los datos fueron combinados con otros conjuntos de datos, y cómo se les limpió. La limpieza se refiere al proceso de corregir o retirar los datos imprecisos o que no son pertinentes. Esto es de particular importancia en el caso de los datos de las redes sociales, que pueden tener un montón de “ruido” (información extra), y que por ende casi siempre son limpiados.

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que el big data tiene en su entorno laboral, o si está considerando algunos de sus aspectos como parte de su programación de DRG:

  1. ¿Recoger big data es el enfoque correcto para la pregunta que está intentando responder? ¿Cómo podría su pregunta responderse de distinto modo usando entrevistas, estudios históricos o concentrándose más bien en la significación estadística?
  2. ¿Ya cuenta con estos datos o son éstos accesibles públicamente? ¿Es realmente necesario que los adquiera por su cuenta?
  3. ¿Cuál es su plan para hacer que resulte imposible identificar a las personas mediante sus datos en el conjunto de datos? Si éstos provienen de otra fuente, ¿qué tipo de desanonimización ha efectuado ya?
  4. ¿Cómo podría alguien hacer más para que las personas sean más identificables cuando usted publique sus datos y hallazgos? ¿Qué pasos puede tomar para reducir el riesgo de que sean identificados?
  5. ¿Cuál es su plan para conseguir el consentimiento de aquellos cuyos datos está recogiendo? ¿Cómo hará para asegurarse de que su documento de consentimiento les sea fácil de entender?
  6. Si sus datos provienen de otra organización, ¿cómo buscó ésta el consentimiento? ¿Dicho consentimiento incluía el que otras organizaciones pudieran usar los datos?
  7. Si está recibiendo los datos de alguna otra organización, ¿cuál fue su fuente? ¿Quién los recogió y qué estaban intentando lograr?
  8. ¿Qué sabe de la calidad de estos datos? ¿Alguien los está inspeccionando en busca de errores? De ser así, ¿cómo? ¿Las herramientas de recolección fallaron en algún punto, o sospecha acaso que podría haber algunas imprecisiones o errores?
  9. ¿Estos datos han sido integrados con otros conjuntos de datos? Si se usaron datos para llenar vacíos, ¿cómo se logró esto?
  10. ¿Cuál es el plan de seguridad de principio a fin para los datos que está captando o usando? ¿Está involucrado algún tercero cuyas propuestas de seguridad deba entender?

Inicio

Estudios de caso

Habitante de aldea en Tanzania. La analítica del big data puede precisar estrategias que funcionan con pequeños agricultores. Crédito de la fotografía: Riaz Jahanpour para USAID / Digital Development Communications.
Big Data para la agricultura climáticamente inteligente

Big Data para la agricultura climáticamente inteligente

“Los científicos del Centro Internacional de Agricultura Tropical (CIAT) han aplicado herramientas de big data para precisar estrategias que funcionen con pequeños agricultores en un clima cambiante…. Los investigadores aplicaron analítica del big data a los registros agrícolas y del clima en Colombia, revelando así de qué modo su variación impacta en el rendimiento del arroz. Estos análisis identifican las variedades de arroz más productivas y el momento de la siembra para lugares específicos y predicciones estacionales. Las recomendaciones podrían potencialmente elevar el rendimiento de 1 a 3 toneladas por hectárea. Las herramientas funcionan dondequiera que se cuente con los datos, y actualmente vienen siendo ampliadas en Colombia, Argentina, Nicaragua, Perú y Uruguay”.

Dispositivos entregados por centros educativos y privacidad de los alumnos

Dispositivos entregados por centros educativos y privacidad de los alumnos, en particular las Mejores Prácticas para la sección de compañías de tecnología educativa.

“Los alumnos vienen usando tecnología en el aula a un ritmo sin precedentes…. Las laptops de los alumnos y los servicios educativos a menudo están disponibles a precios fuertemente reducidos, y a veces son incluso gratuitas. Vienen, sin embargo, con costos reales y preguntas éticas no resueltas. A lo largo de la investigación efectuada por EFF durante los últimos dos años, hallaron que los servicios tecnológicos educativos a menudo recogen mucha más información sobre los niños de lo necesario, y que la guardan por tiempo indefinido. Esta información con implicaciones para la privacidad va más allá de la información personalmente identificable (PII), como el nombre y la fecha de nacimiento, y puede incluir el historial y los términos de búsqueda, los datos de ubicación, las listas de contacto e información conductual… Todo esto a menudo sucede sin el conocimiento o el consentimiento de los alumnos y su familia”.

El big data y las ciudades florecientes: innovaciones en la analítica para construir espacios urbanos sostenibles, resilientes, equitativos y vivibles.

El big data y las ciudades florecientes: innovaciones en la analítica para construir espacios urbanos sostenibles, resilientes, equitativos y vivibles.

Este paper incluye estudios de caso de big data usado para seguir cambios en la urbanización, la congestión del tráfico y el crimen en las ciudades. “[L]a aplicación innovadora de tecnologías geoespaciales y de sensores, así como la penetración de la tecnología telefónica móvil están proporcionando una recolección de datos sin precedentes. Estos datos pueden ser analizados para muchos fines, entre ellos hacer un seguimiento de la población y la movilidad, las inversiones del sector privado y la transparencia de los gobiernos federal y local”.

Combatiendo el ébola en Sierra Leona: compartir datos para mejorar la respuesta a la crisis.

Combatiendo el ébola en Sierra Leona: compartir datos para mejorar la respuesta a la crisis.

“Los datos y la información tienen un papel importante que desempeñar en la lucha no sólo contra el ébola, sino más en general contra una variedad de crisis natural u obra del hombre. Sin embargo, para maximizar dicho potencial es esencial fomentar el lado de la oferta de las iniciativas de datos abiertos, esto es, asegurar la disponibilidad de suficiente información de alta calidad. Esto podría resultar particularmente difícil cuando no hay una política clara que empuje a los actores a cumplir y que fije estándares claros de la calidad y el formato de los datos. Las etapas iniciales de los esfuerzos por tener datos abiertos pueden resultar caóticas y a veces redundantes, en particular durante una crisis. Aunque difícil en tiempos de crisis, mejorar la coordinación entre múltiples actores que trabajan hacia metas similares podría ayudar a reducir la redundancia y conducir a esfuerzos que son más grandes que la suma de sus partes.

Rastreando las muertes relacionadas con conflictos: un panorama preliminar de los sistemas de monitoreo.

Rastreando las muertes relacionadas con conflictos: un panorama preliminar de los sistemas de monitoreo.

“En el marco de la Agenda para el Desarrollo Sostenible 2030 de las Naciones Unidas, los Estados se han comprometido a hacer el seguimiento del número de personas muertas en conflictos armados y a desagregar los datos por sexo, edad y causa, siguiendo el Indicador 16 de los Objetivos de Desarrollo Sostenible (ODS). No hay, sin embargo, ningún consenso internacional en las definiciones, métodos o estándares a usar en la generación de los datos. Es más, los sistemas de monitoreo manejados por las organizaciones internacionales y la sociedad civil difieren en lo que respecta a su cobertura temática, concentración geográfica y nivel de desagregación”.

Equilibrando la utilidad de los datos con la confidencialidad en el censo de los EE.UU.

Balancing data utility and confidentiality in the US census (Equilibrando la utilidad de los datos con la confidencialidad en el censo de los EE.UU.)

Describe cómo el censo está usando una privacidad diferencial para proteger los datos de los encuestados. “A medida que la Oficina del Censo se prepara para enumerar la población de los Estados Unidos en 2020, su dirección ha anunciado que efectuará cambios significativos en los cuadros estadísticos que la oficina piensa publicar. Dados los adelantos en la ciencia de la computación y la amplia disponibilidad de datos comerciales, las técnicas que la oficina ha empleado históricamente para proteger la confidencialidad de puntos de datos individuales ya no pueden resistir a los nuevos enfoques de reconstrucción y reidentificación de datos confidenciales. … [L]as investigaciones llevadas a cabo por la Oficina del Censo han mostrado que ahora es posible reconstruir información y reidentificar a un número considerable de personas a partir de cuadros estadísticos públicamente disponibles. Las viejas protecciones de la privacidad de los datos simplemente ya no funcionan. Por ende, la dirección de la Oficina del Censo ha aceptado que no puede conservar su actual método y esperará a 2030 para efectuar cambios; ha decidido invertir en un nuevo enfoque para garantizar la privacidad, que transformará significativamente la forma en que la oficina produce estadísticas”.

Inicio

Referencias

A continuación aparecen las referencias citadas en este recurso.

Recursos adicionales

Inicio

Categories

Protección de datos

¿Qué es la protección de datos?

La protección de datos se refiere a las prácticas, medidas y leyes que buscan prevenir que cierta información acerca de una persona sea recolectada, usada o compartida de modo tal que sea dañina para ella.

Entrevista con un pesador en Bone, Célebes Meridional, Indonesia. Los recolectores de datos deben recibir capacitación sobre cómo evitar los sesgos durante el proceso de recolección de datos. Crédito por la fotografía: Indah Rufiati/MDPI – cortesía de USAID Oceans.

La protección de datos no es nueva. Los actores malos siempre han buscado acceder a los registros privados de las personas. Antes de la era digital, la protección de datos significaba proteger los datos privados de una persona de que alguien accediera a ellos físicamente, los viera o tomara carpetas y documentos. Las leyes de protección de datos existen hace ya más de 40 años.

Ahora que muchos aspectos de la vida de las personas se han pasado en línea, la información privada, personal e identificable es compartida con regularidad con todo tipo de entidades privadas y públicas. La protección de datos busca asegurar que esta información sea recogida, almacenada y mantenida responsablemente y que las consecuencias involuntarias de su uso sean minimizadas o mitigadas.

¿Qué son los datos?

Con datos nos referimos a información digital como mensajes de texto, videos, clics, huellas dactilares digitales, un bitcoin, el historial de búsqueda y hasta los simples movimientos del cursor. Los datos pueden guardarse en computadoras, dispositivos móviles, en nubes y discos duros externos. Se les puede compartir por correo electrónico, apps de mensajería y herramientas de transferencia de archivos. Sus publicaciones, me gusta y retweets, sus videos de gatos y protestas, y todo lo que comparte en las redes sociales son datos.

Los metadatos son un subconjunto de los datos. Son información guardada dentro de un documento o archivo. Son una huella digital electrónica que contiene información acerca del documento o archivo. Usemos un correo electrónico como ejemplo. Si envía uno a su amigo, su texto son los datos. El correo mismo, sin embargo, contiene toda suerte de metadatos como quién lo creó, quién es el receptor, la dirección IP del autor, el tamaño del mensaje, etc.

Grandes cantidades de datos quedan combinados y guardados juntos. Estos grandes archivos contienen miles o millones de archivos individuales a los que se conoce como conjuntos de datos. Estos últimos son combinados a su vez en conjuntos de datos sumamente grandes. Y estos últimos, a los que se conoce como big data, se usan para entrenar a los sistemas de aprendizaje automático systems.

Datos personales e información personalmente identificable

Los datos pueden parecer sumamente abstractos, pero los pedazos de información a menudo reflejan bastante la identidad o los comportamientos de personas reales. No todos los datos necesitan ser protegidos, pero algunos de ellos, los metadatos inclusive, pueden revelar bastante acerca de una persona. A esto se conoce como Información Personal de Identificación (PII). A la PII usualmente se la conoce como datos personales. Es información que se puede usar para distinguir o rastrear la identidad de una persona como un nombre, el número de pasaporte o los datos biométricos como las huellas digitales y los patrones faciales. PII es también información vinculada a o vinculable con una persona, como su fecha de nacimiento y su religión.

Los datos personales pueden ser recolectados, analizados y compartidos para beneficio de las personas involucradas, pero también pueden usarse con fines dañinos. Ellos son valiosos para muchos actores públicos y privados. Por ejemplo, los recogen las plataformas de redes sociales y son vendidos a compañías de publicidad. Son recolectados por los gobiernos para servir a fines policiales, como perseguir el delito. Los políticos valoran los datos personales para enfocarse en votantes con cierta información política. Estos datos pueden ser monetizados por personas con intenciones criminales, como la venta de identidades falsas.

“Compartir datos es una práctica regular que está haciéndose cada vez más ubicua a medida que la sociedad pasa a estar en línea. Compartirlos no sólo trae beneficios a los usuarios, sino que además es a menudo necesario para cumplir labores administrativas o interactuar con la sociedad actual. Pero no está libre de riesgos. Su información personal revela bastante de usted mismo, sus pensamientos y su vida, que es la razón por la cual necesita ser protegida”.

Access Now’s ‘Creating a Data Protection Framework’, Noviembre de 2018.

¿Cómo se relaciona la protección de datos con el derecho a la privacidad?

El derecho a la protección de los datos personales está estrechamente interconectado con el derecho a la privacidad, pero es algo distinto. La comprensión de qué significa “privacidad” varía de un país a otro basado en su historia, cultura o influencias filosóficas. La protección de datos no siempre es considerada un derecho en sí mismo. Lea aquí más acerca de las diferencias existentes entre la privacidad y la protección de los datos.

La privacidad de los datos es también una forma común de hablar acerca de datos sensibles y la importancia de protegerlos de su compartición involuntaria, así como la recolección y uso indebido o ilegal de datos acerca de una persona o grupo. La estrategia digital de USAID para 2020 – 2024 la define como ‘el derecho de una persona o grupo a conservar el control sobre, y la confidencialidad de, la información de sí misma’.

¿Cómo funciona la protección de datos?

Participante en el programa WeMUNIZE de USAID en Nigeria. La protección de datos debe también ser considerada para conjuntos de datos existentes. Crédito de la fotografía: KC Nwakalor for USAID / Digital Development Communications

Los datos personales pueden y debieran ser resguardados con medidas que protejan la identidad u otra información acerca de una persona, y que respeten su derecho a la privacidad. Ejemplos de tales medidas incluyen el establecer qué datos son vulnerables sobre la base de evaluaciones de riesgo de la privacidad; no mantener datos sensibles en línea; limitan quién puede acceder a ciertos datos; anonimizar los datos sensibles; y sólo recoger los que sean necesarios.

Hay un par de principios y prácticas establecidos para proteger los datos sensibles. En muchos países, estas medidas son impuestas a través de leyes, las cuales contienen los principios claves que son importantes para garantizar la protección de los datos.

“Las leyes de protección de datos buscan proteger los del pueblo dando a las personas derechos sobre ellos, imponiendo normas sobre la forma en que las compañías y gobiernos los usan, y estableciendo reguladores que hacen cumplir las leyes”.

Privacy International sobre protección de datos

A continuación se esbozan un par de términos y principios importantes, que tienen como base el Reglamento General de Protección de Datos de la Unión Europea (GDPR).

  • Sujeto de los datos: toda persona cuyos datos personales estén siendo procesados, como ser añadidos a una base de datos de contactos o a una lista de correo de mensajes publicitarios.
  • Procesamiento de datos quiere decir toda operación realizada con datos personales, ya sea anual o automatizada.
  • Controlador de datos: el actor que determina los fines y medios para los cuales se procesan los datos personales.
  • Procesador de datos: el actor que procesa los datos personales a nombre del controlador; a menudo es un tercero externo a este último, como una parte que ofrece listas de correo o servicios de encuesta.
  • Consentimiento informado: las personas entienden y aceptan que sus datos personales serán recolectados, que se tenga acceso a ellos, se les use y/o comparta, y cómo pueden retirar su consentimiento.
  • Limitación de fines: los datos personales se recogen sólo para un uso específico y justificado, y las otras partes no pueden usarlos con otros fines.
  • Minimización de los datos: la recolección de datos es minimizada y queda limitada a los detalles esenciales.

 

Proveedor del cuidado de salud en Eswatini. Los datos de calidad y los conjuntos de datos protegidos pueden acelerar el impacto en el sector de la salud pública. Crédito de la fotografía: Ncamsile Maseko & Lindani Sifundza.

La guía de Access Now enumera ocho principios de protección de los datos que provienen mayormente de estándares internacionales, en particular de la Convención del Consejo de Europa para la para la Protección de las Personas, en relación con el Procesamiento Automático de Datos Personales (ampliamente conocida como la Convención 108), y de las Privacy Guidelines de la Organización para la Cooperación y el Desarrollo Económico (OCDE): los países que han ratificado los marcos internacionales de protección de datos consideran que son los “estándares mínimos” para la protección de los derechos fundamentales.

Un proyecto de desarrollo que use datos, ya sea mediante una lista de correo o analizando conjuntos de datos, debiera cumplir con las leyes que rigen su protección. De no haber un marco legal nacional, los principios, normas y estándares internacionales pueden servir de línea de base para alcanzar el mismo nivel de protección de los datos y las personas. El acatamiento de estos principios podría parecer molesto, pero implementar unos cuantos pasos relacionados con la protección de datos desde el inicio mismo del proyecto le ayudará a alcanzar los resultados deseados sin poner a la gente en riesgo.

common practices of civil society organizations relate to the terms and principles of the data protection framework of laws and norms

La figura anterior muestra de qué modo las prácticas comunes de las organizaciones de la sociedad civil se relacionan con los términos y principios del marco de las leyes y normas de la protección de datos.

El Reglamento General de Protección de Datos de la Unión Europea (GDPR)

El RGPD, la ley de protección de datos de la UE, entró en vigor en 2018. Se la suele considerar la ley de protección de datos más sólida del mundo. Ella busca mejorar la forma en que la gente puede acceder a su información y limita lo que las organizaciones pueden hacer con los datos personales de los ciudadanos de la UE. Aunque proviene de la UE, el RGPD puede aplicarse también a organizaciones con sede fuera de la región cuando concierne a los datos de sus ciudadanos. El RGPD tiene, por ende, un impacto global.

Las obligaciones derivadas del RGPD y de otras leyes de protección de datos podrían tener amplias implicaciones para las organizaciones de la sociedad civil. Para información acerca del proceso de cumplimiento del RGPD y otros recursos, véase la guía del European Center for Not-for-Profit Law sobre los estándares de la protección de datos para organizaciones de la sociedad civil.

A pesar de sus protecciones, el RGPD también ha sido usado para acosar a los CSO y a periodistas. Por ejemplo, una compañía minera usó una de sus disposiciones para intentar obligar a Global Witness a que revelara las fuentes que usó en una campaña antiminera. Global Witness resistió dichos intentos exitosamente.

Tácticas de protección personales u organizacionales

La forma en que proteja su propia información sensible o los datos de su organización dependerá de su situación específica en términos de sus actividades y entorno legal. El primer paso es evaluar sus necesidades específicas en función a la seguridad y la protección de datos. Por ejemplo, qué información, de caer en manos equivocadas, podría tener consecuencias negativas para usted y su organización?

Los especialistas en seguridad digital han preparado recursos en línea a los cuales puede usar para protegerse. Ejemplos de ello son Security Planner, una guía fácil de usar con consejos revisados por expertos para estar más seguro en línea, y con recomendaciones para implementar prácticas básicas en línea. El Digital Safety Manual ofrece información y consejos prácticos sobre cómo mejorar la seguridad digital de los funcionarios gubernamentales que trabajan con la sociedad civil y los Defensores de los Derechos Humanos (DDH). Este manual brinda 12 cartillas adaptadas a diversas actividades comunes en la colaboración entre gobiernos (y otros socios) y las organizaciones de la sociedad civil. La primera cartilla ayuda a evaluar la seguridad digital.

Manual de seguridad digital

 

Primeros auxilios digitales es un recurso gratuito para personal de respuesta rápida, capacitadores en seguridad digital y activistas expertos en tecnología para que protejan mejor, a sí mismos y a las comunidades a las que apoyan, de los tipos más comunes de emergencias digitales. Los respondedores y mentores de seguridad digital global pueden ayudar con preguntas específicas o con su mentoría, por ejemplo, e Digital Defenders Partnership y el Computer Incident Response Centre for Civil Society (CiviCERT).

Inicio

¿De qué modo es la protección de datos relevante en el espacio cívico y para la democracia?

Muchas iniciativas que buscan fortalecer el espacio cívico o mejorar la democracia emplean tecnología digital. Hay una difundida creencia en que el creciente volumen de datos y las herramientas para procesarlos pueden ser usados para el bien. Y en efecto, la integración de la tecnología digital y el uso de los datos en la democracia, los derechos humanos y la programación de la gobernanza puede tener beneficios significativos; pueden, por ejemplo, conectar a comunidades alrededor del mundo, llegar mejor a poblaciones carentes de servicios, y ayudar a mitigar la desigualdad.

“Dentro del trabajo del cambio social usualmente hay una cruda asimetría de poder. Desde el trabajo humanitario a hacer campañas, de documentar las violaciones de los derechos humanos a la construcción de movimientos, las organizaciones promotoras a menudo están lideradas por —y trabajan con— comunidades vulnerables o marginadas. Frecuentemente abordamos el trabajo del cambio social a través de un lente crítico, priorizando cómo mitigar las asimetrías de poder. Creemos en la necesidad de hacer lo mismo cuando se trata de los datos con los que trabajamos: cuestionarlos, entender sus limitaciones y aprender de ellos en formas responsables”.

¿Qué son los datos responsables?

Si la información de calidad está disponible para las personas correctas cuando la necesitan, los datos están protegidos contra el mal uso, y el proyecto está diseñado con la protección de datos en mente, entonces puede acelerar el impacto.

  • El financiamiento que USAID hiciera de una mejor inspección de los viñedos usando drones y datos de GIS en Moldova, permite a los agricultores inspeccionar, identificar y aislar rápidamente los viñedos infectados con una enfermedad fitoplasmática de la vid.
  • Círculo es una herramienta digital para mujeres periodistas en México que les ayuda a crear fuertes redes de apoyo, a fortalecer sus protocolos de seguridad y a satisfacer las necesidades relacionadas con la protección de sí mismas y sus datos. Fue diseñada con los usuarios finales a través de grupos de chat y talleres presenciales, para así asegurarse de que todo lo que fuese construido en la app sería algo que necesitan y en que pueden confiar.

Al mismo tiempo, el desarrollo impulsado por los datos trae consigo la nueva responsabilidad de prevenir su mal uso cuando se diseñan, implementan o monitorean los proyectos de desarrollo. Los problemas de privacidad y seguridad son sumamente reales cuando el uso de los datos personales es un medio con el cual identificar a las personas que son elegibles para los servicios humanitarios.

  • Los campamentos de refugiados en Jordania necesitaron que los miembros de la comunidad permitieran que se escanease su iris para comprar alimentos y provisiones, y retirar dinero de los ATM. Esta práctica no integró formas significativas de pedir el consentimiento o permitir a las personas excluirse. Además, el uso y recolección de datos personales sumamente sensibles como los biométricos, para permitir hábitos cotidianos de compra, es algo desproporcionado, pues en muchas partes del mundo se cuenta con y usa otras tecnologías digitales menos personales.

Los gobiernos, organizaciones internacionales y actores privados pueden todos hacer un mal uso —incluso involuntariamente— de los datos personales con otros fines de los deseados, afectando así de modo negativo al bienestar de las personas relacionados con ellos. Privacy International resaltó algunos ejemplos:

  • El caso de Tullow Oil, la compañía más grande de exploración y producción de petróleo y gas en África, muestra como un actor privado consideró efectuar una investigación, extensa y detallada, del comportamiento de las comunidades locales a través de una compañía de investigación microfocalizada, para así conseguir ‘estrategias cognitivas y emocionales con las cuales influir y modificar las actitudes y el comportamiento de los turkanas’ en beneficio de Tullow Oil.
  • En Ghana, el Ministerio de Salud encargó un gran estudio de las prácticas y requerimientos de la salud en el país. Esto tuvo como resultado una orden del partido político gobernante, para que se modelara la distribución futura de los votos dentro de cada circunscripción a partir de cómo era que los encuestados decían que votarían, y que hubiese una campaña negativa que intentara conseguir que los partidarios de la oposición no votaran.

Hay recursos y expertos disponibles para ayudar en este proceso. La página web The Principles for Digital Development ofrece recomendaciones, consejos y recursos para proteger la privacidad y la seguridad a través del ciclo de vida de un proyecto, como en la etapa de análisis y planificación, en el diseño y desarrollo de proyectos y en su aplicación e implementación. También se cubren la medición y la evaluación. La página web The Responsible Data ofrece el Hand-Book of the Modern Development Specialist ilustrado y con una guía atractiva y entendible a lo largo de todos los pasos de un proyecto de desarrollo movido por datos: su diseño y el manejo de los datos, con información específica acerca de su recolección, comprensión y compartir, y el cierre de un proyecto.

Trabajadora de ONG se prepara para la recolección de datos en Buru Maluku, Indonesia. Cuando se recogen nuevos datos es importante diseñar el proceso cuidadosamente y pensar cómo afecta a las personas involucradas. Crédito de la fotografía: Indah Rufiati/MDPI – cortesía de USAID Oceans.

Inicio

Oportunidades

Las medidas de protección de datos promueven la democracia, los derechos humanos y las cuestiones de gobernanza. Lea a continuación para aprender cómo pensar de modo más eficaz y seguro acerca de la protección de datos en su trabajo.

Privacidad respetada y la gente protegida

La implementación de patrones de protección de datos en los proyectos de desarrollo protege a las personas de posibles daños debidos al abuso de su información. El abuso tiene lugar cuando una persona, compañía o gobierno accede a los datos personales y los usa con otros fines fuera de aquellos para los cuales fueron recogidos. Los servicios de inteligencia y las agencias policiales a menudo cuentan con medios legales y técnicos para imponer el acceso a los conjuntos de datos y abusar de ellos. Personas contratadas por los gobiernos pueden acceder a los conjuntos de datos hackeando la seguridad del software o de las nubes. Esto a menudo lleva a la intimidación, el silenciamiento y el arresto de los defensores de los derechos humanos, y a que los líderes de la sociedad civil critiquen a su gobierno. Privacy International mapea ejemplos de gobiernos y actores privados que abusan de los datos de las personas.

Unas fuertes medidas protectoras contra el abuso de datos aseguran el respeto al derecho fundamental a la privacidad de las personas cuyos datos fueron recogidos y usados. Las medidas protectoras permiten un desarrollo positivo como la mejora de las estadísticas oficiales, un mejor suministro de servicios, mecanismos de advertencia temprana focalizados, y una respuesta eficaz a los desastres.

Es importante establecer cómo es que los datos son protegidos a lo largo de todo el ciclo de vida de un proyecto. También debiera asegurarse a las personas la protección una vez terminado el proyecto, ya sea abruptamente o según estaba planeado, cuando el proyecto pasa a una fase distinta o cuando recibe financiamiento de distintas fuentes. Oxfam ha preparado un
folleto para ayudar a cualquiera que maneje, comparta o acceda a datos de programa, para que considere debidamente las cuestiones de los datos a lo largo de todo su ciclo de vida, desde preparar un plan a desecharlos.

Inicio

Riesgos

La recolección y el uso de datos puede también crear riesgos en la programación de la sociedad civil. Lea a continuación cómo discernir los posibles peligros asociados con la recolección y el uso de datos en el trabajo DRG, así como el modo de mitigar las consecuencias involuntarias y voluntarias.

Acceso no autorizado a los datos

Los datos necesitan estar guardados en algún lugar, en una computadora o en un disco externo, en una nube o en un servidor local. Dondequiera que se guarden los datos, se deben tomar precauciones para protegerlos de accesos no autorizados, y para evitar revelar la identidad de personas vulnerables. El nivel de protección necesario depende de cuán sensibles sean, esto es en qué medida podría haber consecuencias negativas si la información cae en manos equivocadas.

Los datos pueden guardarse en un servidor cercano y bien protegido, que está conectado con drives con una fuerte encriptación y acceso muy limitado, que es un método para mantener el control de los datos que posee. Los servicios en la nube ofrecidos por compañías tecnológicas bien conocidas, a menudo ofrecen medidas de protección básica y un amplio acceso al conjunto de datos en las versiones gratuitas. Las características de seguridad más avanzadas están disponibles para los clientes que pagan, como el almacenaje de datos en ciertas jurisdicciones que cuentan con leyes que los protegen. Los lineamientos de cómo asegurar los datos privados guardados y a los que se accede en las nubes, ayuda a entender diversos aspectos de éstas y a decidir en situaciones específicas.

Todo sistema necesita ser asegurado de ciberataques y manipulación. Un desafío común es encontrar una forma de proteger las identidades del conjunto de datos, por ejemplo retirando toda la información que podría identificar a personas a partir de los datos, esto es anonimizándolos. La anonimización correcta es de crucial importancia y algo más difícil de lo que a menudo se asume.

Podemos imaginar que un conjunto de datos de la ubicación con GPS de las Personas que Viven con Albinismo en Uganda requiere de una vigorosa protección La persecución tiene como base la creencia en que ciertas partes del cuerpo de las personas albinas pueden transmitir poderes mágicos, o se presume que están malditas y que traen mala suerte. Un proyecto de perfilamiento espacial que mapease la ubicación exacta de las personas pertenecientes a este grupo vulnerable podría mejorar el alcance y suministro de los servicios que se les presta. Sin embargo, el hackeo de las bases de datos o algún otro acceso ilegal a sus datos personales podría ponerles en riesgo ante las personas que quieren explotarles o hacerles daño.

Podríamos también imaginar que quienes operan un sistema alternativo para enviar alertas por ataques aéreos en Siria, corren el riesgo de que las autoridades los pongan en la mira. Si bien la recolección y el compartir de los datos por parte de este grupo busca prevenir muertes y lesiones, disminuye también el impacto de los ataques aéreos de las autoridades sirias. Los datos de la ubicación de las personas que manejan y contribuyen al sistema deben protegerse del acceso o la exposición.

Otro riesgo es que los actores privados que manejan o cooperan en proyectos movidos por datos se vean tentados a venderlos de ofrecérseles grandes sumas de dinero. Estos compradores serían compañías de publicidad o políticos que buscan dirigir campañas comerciales o políticas a personas específicas.

El sistema Tiko, diseñado por la empresa social Triggerise, premia a los jóvenes sus comportamientos positivos en busca de salud, como visitar farmacias y buscar información en línea. El sistema recoge y guarda, entre otras cosas, información personal sensible y de salud de jóvenes suscriptoras, las que usan la plataforma en busca de guía sobre anticonceptivos y abortos seguros, y rastrea sus visitas a las clínicas locales. De no estar protegidos estos datos, los gobiernos que han criminalizado el aborto podrían potencialmente acceder a ellos y usarlos para llevar a cabo acciones policiales contra mujeres embarazadas y proveedores médicos.

Recolección insegura de datos

Cuando se está planeando recoger nuevos datos, es importante diseñar cuidadosamente el proceso de recolección y pensar bien cómo es que afecta a las personas involucradas. Debiera estar claro desde el principio qué tipos de datos serán recogidos, para qué fin, y que las personas involucradas estén de acuerdo. Por ejemplo, el esfuerzo por mapear a personas con discapacidades en una ciudad específica puede mejorar los servicios. Sin embargo, la base de datos no debiera exponerlas a riesgos tales como los ataques o la estigmatización, que podrían concentrarse en hogares específicos. Además, el establecimiento de esta base de datos debería responder a las necesidades de las personas involucradas, y no al simple deseo de usarlos. Para mayores directrices consúltese el capítulo de Getting Data (Consiguiendo los datos) del Hand-book of the Modern Development Specialist (Manual del especialista moderno del desarrollo) y la OHCHR Guidance para adoptar un Enfoque de los Datos Basado en los Derechos Humanos, que se concentre en la recolección y la desagregación.

Cuando los datos son recogidos personalmente por personas reclutadas para este proceso se requiere una capacitación apropiada. Ellos deben ser capaces de crear un espacio seguro para conseguir el consentimiento informado de las personas cuyos datos están siendo recogidos, y saber cómo evitar los sesgos durante el proceso de recolección.

Incógnitas en los conjuntos de datos existentes

Las iniciativas movidas por datos pueden o bien recoger nueva información, por ejemplo mediante un encuesta de alumnos y profesores en un colegio, o sino usar conjuntos de datos ya existentes a partir de fuentes secundarias, por ejemplo empleando un censo gubernamental o raspando las fuentes de las redes sociales. La protección de datos debe también considerarse cuando planee usar los conjuntos de datos ya existentes, como las imágenes de la tierra para el mapeo espacial. Debe analizar qué tipos de datos quiere usar, y si es necesario usar para ello un conjunto de datos específico. En el caso de los conjuntos de datos provenientes de terceros, es importante saber cómo se obtuvo los que desea usar, si se respetaron los principios de la protección de datos durante la fase de recolección, quién los licenció y quién financió el proceso. De no lograr conseguir estas información deberá considerar cuidadosamente si usarlos o no. Véase el Hand-book del especialista moderno del desarrollo acerca del trabajo con los datos ya existentes.

Beneficios del almacenaje en la nube

Una confiable estrategia de almacenaje en la nube ofrece una mayor seguridad y facilidad de implementación, en comparación con proteger su propio servidor. Si bien un adversario decidido puede siempre hackear computadoras individuales o servidores locales, para ellos es un reto significativamente mayor violar las robustas defensas de proveedores reputados de almacenaje en la nube como Google o Microsoft. Estas compañías aplican extensos recursos de seguridad y tienen un fuerte incentivo empresarial para asegurar la máxima protección a sus usuarios. Al confiar en el almacenaje en la nube, los riesgos comunes como el robo físico, los daños a los dispositivos o el malware pueden mitigarse, puesto que la mayoría de los documentos y datos están guardados de forma segura en la nube. En caso de incidentes es conveniente volver a sincronizar y resumir las operaciones en una computadora nueva o limpiada, con poca o nada de información valiosa accesible localmente.

Haciendo una copia de seguridad de los datos

Tener una copia de respaldo es crucial, independientemente de si los datos están guardados en dispositivos físicos o en la nube. Los primeros corren el riesgo de perder datos debido a diversos incidentes como daños en el hardware, ataques de ransomware o robos. El almacenaje en la nube proporciona una ventaja en este sentido, puesto que elimina la dependencia de dispositivos específicos que pueden quedar comprometidos o perderse. Las soluciones de backup integradas como Time Machine para Macs y File History para Windows, así como los backups automáticos en la nube de iPhones y Androids, ofrecen cierto nivel de protección. Sin embargo, el riesgo del error humano permanece incluso con el almacenaje en la nube, lo que hace que sea aconsejable considerar soluciones adicionales de backup en la nube como Backupify o SpinOne Backup. Los backups de seguridad son aún más importantes en el caso de las organizaciones que usan servidores y dispositivos locales. Se recomienda encriptar los discos duros externos usando contraseñas fuertes, empleando herramientas de encriptación como VeraCrypt o BitLocker, y mantener los dispositivos de respaldo en un lugar distinto que los dispositivos primarios. Guardar una copia en un lugar sumamente seguro, como en una caja fuerte, puede brindar una capa extra de protección en caso de desastres que afecten tanto a las computadoras como a sus copias de respaldo.

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que tiene el no contar con medidas de protección de los datos en su entorno laboral, o si está considerando usarlos como parte de su programación de DRG:

  1. ¿Se han adoptado leyes de protección de los datos en el país o países en cuestión? ¿Estas leyes están alineadas con el derecho internacional de los derechos humanos, e incluyen disposiciones que protejan al derecho a la privacidad?
  2. ¿Cómo cumplirá el uso de los datos en su proyecto con los patrones de protección y privacidad de datos?
  3. ¿Qué tipos de datos planea usar? ¿Son personales o está involucrado algún otro dato sensible?
  4. ¿Qué podría suceder a las personas relacionadas con los datos si el gobierno accediera a éstos?
  5. ¿Qué podría suceder si los datos fuesen vendidos a un actor privado para otros fines de los planeados?
  6. ¿Qué medidas de precaución y mitigación se tomaron para proteger los datos y a las personas relacionadas con ellos?
  7. ¿Cómo se protege a los datos de la manipulación y el acceso y mal uso por parte de terceros?
  8. ¿Contará con suficientes conocimientos integrados durante todo el proyecto para asegurar que los datos sean bien manejados?
  9. Si planea recolectar datos, ¿cuál será su finalidad? ¿Su recolección es necesaria para alcanzar dicho fin?
  10. ¿Cómo se entrena a los recolectores de datos personales? ¿Cómo se genera el consentimiento informado a la hora de recogerse los datos?
  11. De estar creando bases de datos, ¿cómo se garantiza el anonimato de las personas relacionadas con ellos?
  12. ¿Cómo se consiguen y guardan los datos que planea usar? ¿El nivel de protección es apropiado a su sensibilidad?
  13. ¿Quién tiene acceso a los datos? ¿Qué medidas se toman para garantizar que se acceda a ellos para el objetivo planificado?
  14. ¿Qué otras entidades —compañías, socios— procesarán, analizarán, visualizarán y usarán de algún otro modo los datos de su proyecto? ¿Qué medidas se han tomado para protegerlos? ¿Se han establecido acuerdos con ellos para evitar su monetización o mal uso?
  15. ¿De construir una plataforma, ¿cómo protegerá a sus usuarios registrados?
  16. ¿La base de datos, el sistema de su almacenaje o la plataforma son auditables por investigadores independientes?

Inicio

Estudios de caso

People Living with HIV Stigma Index and Implementation Brief

El People Living with HIV Stigma Index (Índice de estigma y discriminación en personas con VIH) es un cuestionario y estrategia de muestreo estandarizados, para recoger datos cruciales acerca de los estigmas intersecados y la discriminación que afectan a las personas que viven con VIH. Éste monitorea el estigma y la discriminación relacionados con el VIH en diversos países y presenta evidencias para su defensa en ellos. Los datos de este proyecto son las experiencias de personas que viven con VIH. El implementation brief (Breviario de implementación) muestra medidas de protección de datos. Quienes viven con VIH se encuentran al centro de todo el proceso, vinculando continuamente a los datos que se recogen acerca de ellos con las personas mismas, comenzando con el diseño de la investigación y pasando a la implementación y al uso de los hallazgos para prestarles apoyo. Los datos se recogen mediante un proceso de entrevistas de par a par, con las personas que viven con VIH de diversos antecedentes sirviendo como entrevistadores capacitados. Se ha diseñado una metodología estándar de implementación, que incluye el establecimiento de un comité de conducción con partes interesadas claves y grupos de población.

La protección de datos del Love Matters Program de RNW Media

El Love Matters Program de RNW Media ofrece plataformas en línea para fomentar la discusión y compartir información sobre el amor, el sexo y las relaciones con personas de 18 a 30 años, en áreas en donde la información sobre la salud y derechos sexuales y reproductivos (SDSR) sigue censurada o es tabú. Los equipos digitales de RNW Media introdujeron enfoques creativos al procesamiento y análisis de los datos, metodologías de Social Listening y técnicas de procesamiento de lenguajes naturales para hacer más inclusivas a las plataformas, crear contenidos focalizados e identificar a influencers y trending topics. Los gobiernos han impuesto restricciones tales como tasas de licencia o registros para influencers en línea, como una forma de monitorear y bloquear contenidos “indeseables”, y RNW Media ha invertido en la seguridad de sus plataformas y los conocimientos de los usuarios para protegerlos del acceso a su información personal sensible. Lea más en la publicación ‘33 Showcases – Digitalisation and Development – Inspiration from Dutch development cooperation’ (33 Vitrinas – Digitalización y desarrollo – Inspiración de la cooperación holandesa para el desarrollo), Ministerio de Asuntos Exteriores de Holanda, 2019, p 12-14.

Informe de Amnistía Internacional

Informe de Amnistía Internacional

Cada día, miles de activistas y organizaciones por la democracia y los derechos humanos dependen de canales de comunicación seguros para conservar la confidencialidad de sus conversaciones en entornos políticos difíciles. Sin semejantes prácticas de seguridad, los mensajes sensibles pueden ser interceptados y usados por las autoridades para poner la mira en los activistas y disolver las protestas. Un ejemplo prominente y detallado de esto tuvo lugar luego de las elecciones de 2010 en Bielorrusia. Tal como se detalla en este informe de Amnistía Internacional, las grabaciones telefónicas y otras comunicaciones no encriptadas fueron interceptadas por el gobierno y usadas en los tribunales contra prominentes políticos y activistas opositores, muchos de los cuales pasaron años en prisión. En 2020, otra oleada de protestas postelectorales en Bielorrusia vio a miles de manifestantes adoptando apps de mensajería seguras y amistosas para con los usuarios —que no eran fácilmente disponibles 10 años antes— para proteger sus comunicaciones sensibles.

Datos del parlamento noruego

Datos del parlamento noruego

El Storting, el parlamento noruego, ha experimentado otro ciberataque que involucró el uso de vulnerabilidades recién descubiertas en Microsoft Exchange. Estas vulnerabilidades, a las que se conoce como ProxyLogon, fueron enfrentadas con parches de seguridad de emergencia lanzados por Microsoft. Los ataques iniciales fueron atribuidos a un grupo de hackeo chino bajo auspicio estatal llamado HAFNIUM, que utilizó las vulnerabilidades para comprometer los servidores, establecer web shells de puerta trasera y conseguir acceso no autorizado a las redes internas de diversas organizaciones. Los repetidos ciberataques al Storting y la participación de diversos grupos de hackers subrayan la importancia de la protección de datos, las actualizaciones de seguridad oportunas y medidas proactivas para mitigar los riesgos informáticos. Las organizaciones deben permanecer vigilantes, mantenerse informadas de las últimas vulnerabilidades y tomar las medidas apropiadas para resguardar sus sistemas y datos.

Girl Effect

Girl Effect, una organización creativa sin fines de lucro, que opera en lugares donde las muchachas están marginadas y son vulnerables, usa los medios y la tecnología móvil para empoderarlas. La organización emplea las herramientas e intervenciones digitales, y reconoce que toda organización que use datos tiene también la responsabilidad de proteger a la gente con la que habla o con la que se conecta en línea. Su ‘Digital safeguarding tips and guidance’ (Consejos y guía de protección digital) brinda una guía a profundidad sobre la implementación de medidas para la protección de datos cuando se trabaja con personas vulnerables. Oxfam, que menciona a Girl Effect como inspiración, ha desarrollado e implementado una Política de datos responsable y comparte muchos recursos en línea de respaldo. La publicación ‘Privacy and data security under GDPR for quantitative impact evaluation’ (Privacidad y seguridad de los datos bajo el RGPD para una evaluación de impacto cuantitativa) brinda detalladas consideraciones acerca de las medidas de protección de los datos que Oxfam implementa, cuando efectúa una evaluación de impacto cuantitativo mediante encuestas y entrevistas digitales y en papel.

Inicio

Referencias

A continuación aparecen los trabajos citados en este recurso.

Recursos adicionales

Inicio

Categories

ID Digital

¿Qué es el ID digital?

Familias desplazadas por la violencia de Boko Haram en Maiduguri, Nigeria nororiental. La implementación de un sistema de ID digital requiere del consentimiento informado de los participantes. Crédito de la fotografía: USAID.
Familias desplazadas por la violencia de Boko Haram en Maiduguri, Nigeria nororiental. La implementación de un sistema de ID digital requiere del consentimiento informado de los participantes. Crédito de la fotografía: USAID.

Los sistemas de ID digital son los que dependen de la tecnología digital. La tecnología biométrica es un tipo de herramienta usada a menudo para la identificación digital: la biometría permite a la gente probar su identidad a partir de una característica o rasgo físico (dato biológico). Otras formas de identificación digital incluyen las tarjetas y tecnologías móviles. Este recurso, que se apoya en el trabajo de The Engine Room, examinará las distintas formas y las implicaciones de las ID digitales, con atención particular en las biométricas, lo que incluye su integración con los sistemas de salud y su potencial para la participación electrónica.

“La biometría no es nueva; las fotografías se han usado en este sector durante años, pero el discurso actual en torno a la ‘biométrica’ usualmente se refiere a las huellas digitales, huellas faciales y reconocimiento del iris. A medida que la tecnología continúe avanzando, la capacidad de capturar otras formas de datos biométricos también irá mejorando de modo tal que las huellas de voz, escaneos retinales, patrones de venas, huellas linguales, movimientos labiales, patrones de orejas, la caminata y, claro está, el ADN podrán usarse con fines de autenticación e identificación”.

The Engine Room

Definiciones

Datos biométricos: las características físicas o rasgos personales distintivos automáticamente mensurables, usados para identificar o verificar la identidad de una persona.

Consentimiento: el artículo 4(11) del Reglamento General de Protección de Datos (RGPD) define el consentimiento: “El consentimiento del sujeto de los datos quiere decir toda indicación libremente dada, específica, informada e inequívoca del deseo de dicho sujeto, mediante una declaración o clara acción afirmativa, que significa su acuerdo al procesamiento de los datos personales relacionados con él o ella”. Véase también el recurso de Protección de datos.

Sujeto de los datos: la persona cuyos datos se recogen.

ID digital: un sistema electrónico de manejo de la identidad usado para probar la identidad de una persona o su derecho a acceder a información o servicios.

Voto electrónico: un sistema electoral que permite a un votante expedir electrónicamente su voto seguro y secreto.

Sistemas biométricos fundamentales: sistemas que proveen una identificación general para usos oficiales, como el registro civil nacional y el ID nacional.

Sistemas biométricos funcionales: sistemas que responden a una demanda de un servicio o transacción particular, como la ID de un votante, registros de salud o servicios financieros.

Identificación/autenticación de uno a muchos: el uso del identificador biométrico para identificar al sujeto de los datos dentro de una base de datos de otros perfiles biométricos.

Inmutabilidad: la cualidad de una característica que no cambia con el tiempo (por ejemplo, el ADN).

Identidad portátil: las credenciales del ID digital de una persona pueden ser llevadas consigo más allá de la autoridad emisora original, para así probar la identidad oficial a nuevas relaciones/entidades del usuario sin tener que repetir la verificación en cada oportunidad.

Identidad autosoberana: una ID digital que da al sujeto de los datos la propiedad plena sobre su identidad digital, garantizándole su portabilidad vitalicia independientemente de toda autoridad central.

Singularidad: una característica que distingue suficientemente a una persona de otra. La mayoría de las formas de datos biométricos son singularmente únicos a la persona involucrada.

Verificación/autenticación uno a uno: el uso del identificador biométrico para confirmar que el sujeto de los datos es quien afirma ser.

¿Cómo funciona la ID digital?

Joven mujer iraquí retratada en el campamento de IDP de Harsham en Erbil, Iraq. Los ID digital y la biometría tienen el potencial para facilitar el proceso de votación. Crédito de la fotografía: Jim Huylebroek para Creative Associates International.
Joven mujer iraquí retratada en el campamento de IDP de Harsham en Erbil, Iraq. Los ID digital y la biometría tienen el potencial para facilitar el proceso de votación. Crédito de la fotografía: Jim Huylebroek para Creative Associates International.

Hay tres principales categorías de tecnología usada en la identificación digital: biometría, tarjetas y móvil. Dentro de cada una de estas áreas hay una amplia gama de tecnologías a las cuales se puede usar.

El NIST (National Institute of Standards and Technology, una de las principales autoridades internacionales de ID digitales) identifica tres partes en cómo es que el proceso de ID digital opera.

1ª parte: prueba y registro de identidad

Este es el proceso de ligar los datos de la identidad del sujeto con un autenticador, que es una herramienta usada para probar su identidad.

  • Con un ID biométrico, esto involucra la recolección de los datos (mediante el escaneo ocular, la toma de huellas digitales, la presentación de un selfie, etc.) que verifican que la persona es quien dice ser, y la conexión de dicha persona con una cuenta de identidad (perfil).
  • Con un ID no biométrico, esto involucra entregarle a la persona una herramienta (un autenticador) que podrá usar para su autenticación, como una clave, un código de barras, etc.

2a parte: autenticación

Este es el proceso de usar la ID digital para probar la identidad o acceder a servicios.

Autenticación biométrica: hay dos tipos distintos de autenticación biométrica.

  • La verificación biométrica (o autenticación uno a uno) confirma que la persona es quien dice ser. Esto permite a las organizaciones establecer, por ejemplo, que una persona tiene derecho a ciertos alimentos, vacunas o vivienda.
  • La identificación biométrica (o autenticación uno a muchos) se usa para identificar a una persona dentro de una base de datos de perfiles biométricos. Las organizaciones pueden emplear la biometría para prevenir las inscripciones fraudulentas y para “des-duplicar” listas de personas. Los sistemas de autenticación uno a muchos presentan más riesgos que los sistemas uno a uno porque requieren que una mayor cantidad de datos sean almacenados en un lugar, y porque conducen a más coincidencias falsas. (Lea más en la sección Riesgos).

El cuadro que aparece a continuación resume las ventajas y desventajas de las distintas herramientas de identificación biométrica. Para mayores detalles consúltese “Technology Landscape for Digital Identification (2018)” del Banco Mundial.

Herramienta biométricaVentajasDesventajas
Huellas dactilaresMenos invasiva física/personalmente; método avanzado y relativamente asequibleNo es plenamente inclusiva; algunas huellas dactilares son más difíciles de captar que otras
Escaneo del iris
Rápido, preciso, inclusivo y seguroTecnología más costosa, la verificación requiere de un posicionamiento preciso del sujeto de los datos; puede ser mal utilizada para fines de vigilancia (verificación sin permiso del sujeto de los datos)
Reconocimiento facialRelativamente asequibleProclive al error; puede ser mal utilizada con fines de vigilancia (verificación sin permiso del sujeto de los datos); no hay suficiente estandarización entre los proveedores de la tecnología, lo que podría generar una dependencia del proveedor
Reconocimiento de vozRelativamente asequible; no hay problemas de higiene (a diferencia de otra biometría que requiere del tacto)El proceso de recolección puede ser difícil y tomar mucho tiempo; es difícil ampliar la escala de esta tecnología
Reconocimiento conductual, también conocida como “Biometría suave” (esto es, la caminata de una persona, el modo en que firma)Puede usarse en tiempo realProclive al error; aún no es una tecnología madura; podría ser mal utilizada con fines de vigilancia (verificación sin permiso del sujeto de los datos)
Reconocimiento vascular (El patrón singular de venas de una persona)Tecnología segura, precisa e inclusivaMás costosa; aún no es una tecnología madura y no es ampliamente entendida; no es interoperable/los datos no son fácilmente portables
Perfil de ADNSeguro; preciso; inclusivo; útil para poblaciones grandesEl proceso de recolección es largo; la tecnología es costosa; involucra información extremadamente sensible a la cual se podría usar para identificar la raza, género y relaciones familiares, etc., lo que podría poner en riesgo a la persona

Autenticación no biométrica: hay dos formas comunes de ID digital que no están basadas en características o rasgos personales, y que también tienen métodos de autenticación. Las tarjetas y aplicaciones digitales de IA en los dispositivos móviles pueden también usarse para probar la identidad o acceder a servicios o asistencia (como un pasaporte, tarjeta de residencia o licencia de conducir).

  • Tarjetas: estas son un identificador digital común, que pueden depender de muchos tipos de tecnología, desde los microchips a los códigos de barras. Las tarjetas han estado en uso por un largo tiempo, lo que las hace una tecnología madura, pero también son menos seguras porque pueden perderse o ser robadas. Hay “tarjetas inteligentes” bajo la forma de un microchip insertado combinado con una contraseña. Las tarjetas también pueden combinarse con los sistemas biométricos. Por ejemplo, Mastercard y Thales comenzaron a ofrecer tarjetas con sensores de huellas dactilares en enero de 2020.
  • Apps en dispositivos móviles: los ID digitales pueden usarse en dispositivos móviles dependiendo de una contraseña, una tarjeta SIM “criptográfica” (especialmente codificada) o una app de “ID inteligente”. Estos métodos son bastante precisos y ampliables de escala, pero tienen riesgos de seguridad y también riesgos en el largo plazo debido a la dependencia de los proveedores de tecnología: la tecnología podría no ser interoperable o hacerse obsoleta (véase Privatización del ID y Dependencia del vendedor en la sección Riesgos ).

Part 3a parte: portabilidad e interoperabilidad

Las ID digitales usualmente son generadas para una persona por una sola autoridad emisora (ONG, entidad gubernamental, proveedor de salud, etc.). Sin embargo, la portabilidad quiere decir que los sistemas de ID digitales pueden diseñarse para permitir que la persona utilice su ID en otros lugares además de la autoridad emisora, por ejemplo con otra entidad gubernamental u organización sin fines de lucro.

Para entender la interoperabilidad, considere por ejemplo a distintos proveedores de mensajes electrónicos como Gmail y Yahoo Mail: son distintos proveedores de servicio pero sus usuarios pueden enviarse mensajes entre ellos. La portabilidad e interoperabilidad de los datos son cruciales desde una perspectiva fundamental de los derechos, pero primero es necesario que distintas redes (proveedores, gobiernos) sean operables entre sí para que la portabilidad sea posible. La interoperabilidad es cada vez más importante para proporcionar servicios dentro y entre países, como se puede ver en la
Unión Europea y la comunidad Schengen, la comunidad de África Oriental y la comunidad ECOWAS de África occidental.

La identidad autosoberana (SSI) es un importante tipo emergente de ID digital que da a una persona la propiedad total de su identidad digital, garantizando así su portabilidad vitalicia independientemente de toda autoridad central. El modelo de la identidad autosoberana busca eliminar los problemas de confianza y los desequilibrios de poder que acompañan por lo general a la identidad digital, dándole a la persona el control total de sus datos.

Inicio

¿De qué modo es la ID digital relevante en el espacio cívico y para la democracia?

La gente de todo el mundo que no está identificada con documentos gubernamentales enfrenta unas barreras significativas para la recepción de servicios del gobierno y asistencia humanitaria. La biometría es ampliamente usada por los donantes y actores del desarrollo para identificar a las personas y conectarlas con los servicios. La tecnología biométrica podría incrementar el acceso a las finanzas, el cuidado de la salud, la educación y otros servicios y beneficios cruciales. También podría emplearse para registrar votantes y facilitar la participación cívica.

Una residente de Garin Wazam, en Níger, canjea su vale electrónico por comida. La tecnología biométrica puede incrementar el acceso a servicios y beneficios cruciales. Crédito de la fotografía: Guimba Souleymane, International Red Cross Niger.

El Alto Comisionado de las Naciones Unidas para los Refugiados (ACNUR) dio inicio a su Sistema de Gestión de Identidad Biométrica (“BIMS”) en 2015, y al año siguiente el World Food Program comenzó a usar la biometría para múltiples fines, entre ellos la protección de refugiados, intervenciones basadas en dinero en efectivo y la inscripción de votantes. En los últimos años, una creciente preferencia por el suministro de la asistencia en dinero en efectivo en estas intervenciones formó parte del impulso hacia la ID digital y la biometría, puesto que estas herramientas pueden monitorear y reportar la distribución de la ayuda.

La naturaleza automatizada de la ID digital trae consigo muchos nuevos retos, desde la recolección del consentimiento significativamente informado hasta el garantizar la seguridad personal y a nivel de las organizaciones, o a posiblemente causar daños a la dignidad humana o una creciente exclusión. Estos problemas técnicos y sociales se detallan en la
sección Riesgos.

Principios éticos de la biometría

Fundado en julio de 2001 en Australia, el Biometrics Institute es una organización de membresía independiente e internacional de la comunidad biométrica. En marzo de 2019, ésta presentó los siete “Ethical Principles for Biometrics” (Principios éticos de la biometría).

  1. Comportamiento ético: reconocemos que nuestros miembros deben actuar éticamente incluso más allá de lo que la ley requiere. Con comportamiento ético se entiende evitar actos que dañen a las personas y a su entorno.
  2. Propiedad de la biometría y respeto por los datos individuales de una persona: aceptamos que las personas tienen una propiedad significativa pero no total de sus datos personales (independientemente de dónde se les guarde y procese) y de su biometría en particular, lo que requiere que sus datos deberán ser respetados y tratados con el mayor cuidado posible por otros, incluso cuando se les comparta.
  3. Servir a los humanos: sostenemos que la tecnología debe servir a los humanos y que debiera tener en cuenta el bien público, la seguridad de la comunidad y los beneficios netos de las personas.
  4. Justicia y rendición de cuentas: aceptamos los principios de apertura, supervisión independiente, rendición de cuentas y el derecho de apelación y la debida reparación.
  5. Promover la tecnología que mejore la privacidad: promovemos la más alta calidad del uso de la tecnología apropiada, lo que incluye la precisión, la detección y reparación de errores, sistemas resistentes y el control de calidad.
  6. Reconocer la dignidad e iguales derechos: apoyamos el reconocimiento de la dignidad y la igualdad de derechos para todas las personas y familias como la base de la libertad, la justicia y la paz en el mundo, en consonancia con la Declaración universal de los derechos humanos de las Naciones Unidas.
  7. Igualdad: promovemos la planificación e implementación de la tecnología para prevenir la discriminación o el sesgo sistémico basados en la religión, la edad, el género, la raza, sexualidad u otros descriptores de los humanos.

Inicio

Oportunidades

Registro biométrico de los votantes en Kenia. La recolección y el almacenaje de los datos biométricos requieren de fuertes medidas de protección de datos. Crédito de la fotografía: USAID/Kenya Jefrey Karang’ae.

Hágase estas preguntas si está intentando entender las implicaciones de los ID digitales en su entorno laboral, o si está considerando usar algunos aspectos de ellos como parte de sus programas de DRG:
Reducción potencial del fraude

La biometría es frecuentemente citada por su potencial para reducir el fraude y, más en general, gestionar el riesgo financiero al facilitar la supervisión de debida diligencia y el escrutinio de las transacciones. Según The Engine Room, estas son justificaciones frecuentemente citadas para el uso de la biometría entre los actores de desarrollo y humanitarios, pero The Engine Room también halló que faltan evidencias con que respaldar esta afirmación. No debiera asumirse que el fraude se da sólo a nivel de los beneficiarios: los problemas reales de fraude podrían tener lugar en cualquier parte de un ecosistema.

Facilitando el voto electrónico

Más allá de la distribución de dinero y servicios, el potencial de los ID digitales y la biometría es facilitar el proceso de votación. El derecho a votar, y más en general a participar en procesos democráticos, es un derecho humano fundamental. Recientemente, el uso de sistemas con un registro biométrico de los votantes y de la votación se ha difundido más como medio de empoderar la participación cívica, de asegurar más a los sistemas electorales, y como protección del fraude en la votación y de las inscripciones múltiples.

Los promotores sostienen que el voto electrónico podría reducir los costos de participación y hacer que el proceso sea más confiable. Los críticos, entretanto, afirman que los sistemas digitales corren el riesgo de fallos, abusos y violaciones a la seguridad. La manipulación de las boletas electrónicas, un código mal escrito o cualquier otro tipo de fallo técnico podría comprometer el proceso democrático, en particular cuando no se cuenta con el respaldo de una huella de papel. Para mayor información consúltese
Introducing Biometric Technology in Elections” (2017), del International Institute for Democracy and Electoral Assistance, que incluye estudios de caso detallados sobre el voto electrónico en Bangladesh, Fiyi, Mongolia, Nigeria, Uganda y Zambia.

Historiales médicos

Proteger los expedientes médicos electrónicos, en particular cuando los servicios de cuidado son suministrados por múltiples actores, podría ser algo muy complicado, costoso e ineficiente. Dado que la biometría liga a un único verificador con una sola persona, son útiles para identificar a los pacientes, y permiten que los médicos y los proveedores de salud conecten a una persona con información de su salud y su historial médico. La biometría tiene potencial en la distribución de vacunas, por ejemplo al poder identificar quién ha recibido vacunas específicas (véase el estudio de caso de The New Humanitarian acerca de la tecnología Gavi).

El acceso al cuidado de salud puede ser particularmente complicado en las zonas de conflicto para los migrantes y personas desplazadas, o para otros grupos que no cuentan con su expediente de salud documentado. Con la biometría interoperable, cuando los pacientes necesitan transferirse de un servicio a otro por cualesquier razón, su información digital puede viajar con ellos. Para mayor información consúltese World Bank Group ID4D, “The Role of Digital Identification for Healthcare: The Emerging Use Cases” (2018).

Mayor acceso a intervenciones basadas en dinero en efectivo

Los sistemas de ID digital tienen el potencial para incluir a los grupos no bancarizados o subatendidos por las instituciones financieras en la economía local o hasta global. El ID digital da a las personas acceso a servicios financieros regulados al permitirles probar su identidad oficial. Las poblaciones en áreas remotas pueden beneficiarse en particular con ID digitales, que permiten el proofing/inscripción remota o no de rostro a rostro para la identificación /verificación de los clientes. La biometría puede asimismo hacer que los servicios bancarios sean mucho más eficientes, reduciendo los requisitos y obstáculos que los beneficiarios normalmente enfrentarían. La WFP brinda un ejemplo de una exitosa intervención con dinero en efectivo: en 2017 lanzó su primera asistencia basada en efectivo para niñas de colegios secundarios en Pakistán noroccidental, usando los datos biométricos de asistencia.

Según el Grupo de Acción Financiera Internacional la biometría refuerza aún más las salvaguardas financieras al llevar más gente al sector financiero regulado.

Mejor distribución de la asistencia y de los beneficios sociales

Los sistemas biométricos pueden reducir gran parte del tiempo y esfuerzo humanos que yacen detrás de la asistencia, liberando así recursos humanos para dedicarlos al suministro de los servicios. La biometría permite que el suministro de asistencia sea entregado en tiempo real, lo que permite a los gobiernos y organizaciones de asistencia responder rápidamente a los problemas de los beneficiarios.

La biometría también permite reducir las redundancias en la entrega de beneficios sociales y de subvenciones. Por ejemplo, en 2015 el Grupo del Banco Mundial halló que en Botsuana, los ID digitales biométricos alcanzaron un ahorro del 25 por ciento en pensiones y subvenciones sociales identificando registros duplicados y beneficiarios fallecidos. En efecto, el problema de los beneficiarios “fantasmas” es un problema común. En 2019, el
Fondo de Pensiones del Gobierno de Namibia (GIPF) comenzó a pedir a los receptores de pensiones que inscribieran su biometría en la oficina más cercana del GIPF y que regresaran para verificar su identidad tres veces al año. La distribución de los beneficios sociales puede, claro está, ser asistida por la biometría pero también requiere de supervisión humana, dada la posibilidad de problemas técnicos en el suministro del servicio digital y la naturaleza crítica de dichos servicios (véase más detalles en la sección de Riesgos).

Prueba de identidad

Los migrantes, refugiados y personas en busca de asilo a menudo luchan por probar y conservar su identidad cuando se reubican. Cuando huyen de su hogar, muchos pierden la prueba de su identidad legal y de sus activos, por ejemplo, títulos y certificaciones, expedientes médicos y activos financieros. Una biometría diseñada responsablemente podría ayudar a estas poblaciones a restablecerse y a conservar la prueba de su identidad. En Finlandia, por ejemplo, una startup de blockchain llamada MONI viene trabajando desde 2015 con el Servicio Migratorio finés para dar a los refugiados que hay en el país una tarjeta de crédito prepagada, respaldada por un número de identidad digital guardado en un blockchain. El diseño de estas tecnologías es crucial: los datos debieran estar distribuidos antes que centralizados, para así prevenir riesgos de seguridad y la mala utilización o abusos que vienen con la propiedad centralizada de la información sensible.

Inicio

Riesgos

El uso de tecnologías emergentes puede asimismo crear riesgos en los programas de la sociedad civil. Lea a continuación cómo distinguir los posibles riesgos asociados con el uso de las herramientas de ID digital en el trabajo DRG.

Deshumanización de los beneficiarios

La forma en que se considera a la biometría —el otorgamiento de identidad a una persona como si no la hubiese tenido antes— podría ser considerada problemática y hasta deshumanizadora.

Tal como The Engine Room
explica, “el discurso en torno a los beneficios de ‘identificabilidad’ de la biometría en las intervenciones humanitarias frecuentemente tiende a incluir el papel que ésta puede tener. Las organizaciones humanitarias no pueden ‘dar’ una identidad a un beneficiario, sólo pueden registrar las características identificadoras y cotejarlas con otros registros. Tratar la adquisición de datos biométricos como si fuesen un elemento constitutivo de la identidad corre el riesgo de deshumanizar a los beneficiarios, la mayoría de los cuales ya de por sí están desamparados en su relación con las entidades humanitarias de las cuales dependen para su supervivencia. Esta actitud resulta evidente en las observaciones hechas por un refugiado birmano al que se le estaban tomando las huellas dactilares en Malasia en 2006 —‘No sé para qué es, pero sí que es lo que ACNUR desea que haga’—, así como en las palabras de un refugiado congolés en Malawi, quien al completar el registro biométrico le dijo al personal: ‘Ya puedo ser alguien’”.

Falta de consentimiento informado

Es crucial obtener el consentimiento informado de las personas en el proceso de inscripción biométrico. Pero este raramente es el caso en los entornos humanitarios y de desarrollo, dados los muchos aspectos técnicos confusos de la tecnología, la lengua y las barreras culturales, etc. Un acuerdo que es potencialmente forzado, no constituye consentimiento, tal como lo ilustra el caso del programa de registro biométrico en Kenia, el cual fue impugnado en los tribunales después de que muchos kenianos se sintieran presionados a inscribirse. Resulta difícil garantizar o siquiera evaluar el consentimiento cuando el desequilibrio de poder entre la autoridad emisora y el sujeto de los datos es tan sustancial. “Los refugiados, por ejemplo, podrían sentir que no tienen otra opción que dar su información porque se encuentran en situación vulnerable”.

Los menores de edad también corren un riesgo similar de un consentimiento coactado o no informado. Como The Engine Room señalara en 2016, “el ACNUR ha adoptado la postura de que la negativa a someterse a la inscripción biométrica equivale a una negativa a inscribirse en absoluto. De ser esto cierto, estaría restringiendo el derecho de los beneficiarios a cuestionar el recojo de datos biométricos, y crearía un desincentivo considerable para los beneficiarios que manifiestan su oposición al enfoque biométrico”.

Para que el consentimiento sea realmente dado, la persona debe contar con un método alternativo para que sienta que puede rechazar el procedimiento sin ser penalizado de modo desproporcionado. Las organizaciones de la sociedad civil podrían tener un papel importante en ayudar a remediar este desequilibrio de poder.

Riesgos de seguridad

Los sistemas de ID digital ofrecen muchas características de seguridad importantes, pero incrementan otros riesgos de seguridad como el de la filtración de los datos, su corrupción o uso/mal uso por parte de actores no autorizados. Dichos sistemas pueden involucrar datos sumamente detallados acerca de los comportamientos y movimientos de personas vulnerables, por ejemplo su historia financiera y su asistencia a colegios, clínicas de salud y establecimientos religiosos. Esta información podría usarse en su contra de caer en manos de otros actores (gobiernos corruptos, marketeros, delincuentes).

La pérdida, robo o mal uso de los datos biométricos son algunos de los
riesgos más grandes para las organizaciones que emplean estas tecnologías. Al recoger y almacenar sus datos biométricos en bases de datos centralizadas, las organizaciones de asistencia podrían estar poniendo a sus beneficiarios en serio riesgo, en particular si éstos están huyendo de persecuciones o conflictos. Como la ID digital en general depende de la Internet o de alguna otra red de comunicación abierta, son muchas las oportunidades para que se den ciberataques y violaciones de seguridad. The Engine Room también cita información anecdótica de trabajadores humanitarios que pierden laptops, llaves USB y otros archivos digitales que contienen los datos de los beneficiarios. Consúltese también el recurso de Protección de datos.

Reutilización y mal uso de los datos

Dado que la biometría es única e inmutable, una vez que los datos biométricos están afuera en el mundo la gente ya no es más la única propietaria de sus identificadores. The Engine Room describe esto como la “no revocabilidad” de la biometría. Esto quiere decir que la biometría podría ser usada para otros fines fuera de su objetivo original. Por ejemplo, los gobiernos podrían requerir que los actores humanitarios les den acceso a las bases de datos biométricas con fines políticos, o los países extranjeros podrían obtener datos biométricos con fines de inteligencia. Las personas no pueden cambiar fácilmente su biometría, como sí lo harían con una licencia de conducir o siquiera su nombre: por ejemplo, con el reconocimiento facial tendrían que tener cirugía plástica a fin de retirar sus datos biométricos.

También se corre el riesgo de que la biometría sea usada por futuras tecnologías aún más intrusivas o dañinas que sus actuales usos. “Los gobiernos que reciben grandes poblaciones de refugiados, como el Líbano, han reclamado el derecho a tener acceso a la base de datos biométrica del ACNUR, y los Estados donantes han respaldado el uso que éste hace de la biometría por su interés en emplear los datos biométricos adquiridos como parte de su así llamada “guerra contra el terror” en curso.

The Engine Room

Para más información acerca de la potencial reutilización de los datos biométricos con fines de vigilancia consúltese también “Aiding surveillance: An exploration of how development and humanitarian aid initiatives are enabling surveillance in developing countries,” I&N Working Paper (2014).

Fallos y errores

Los sistemas de ID digital pueden experimentar muchos errores porque son demasiado técnicos y dependen de múltiples pasos y mecanismos. La biometría puede devolver falsas coincidencias y ligar a una persona con la identidad incorrecta, o falsos negativos, no vinculando a uno con su identidad real. Cuando se la aplica en comunidades reales, la tecnología no siempre funciona tal como lo hace en el laboratorio. Es más, algunas poblaciones se ven más perjudicadas con los errores que otras: por ejemplo, y como ya ha sido ampliamente probado, la gente de color es la que con mayor frecuencia es mal identificada por la tecnología de reconocimiento facial.

Algunas tecnologías son más proclives a los errores que otras; por ejemplo la biometría suave, que mide elementos tales como la caminata de una persona, es una tecnología menos madura y precisa que los escaneos de iris. Hasta las huellas dactilares siguen teniendo una alta tasa de error no obstante ser relativamente madura y ampliamente usada. La performance de ciertas biomedidas puede asimismo ir cayendo con el paso del tiempo: el envejecimiento puede cambiar las características faciales de una persona y hasta sus iris, en formas tales que podrían impedir la autenticación biométrica. La ID digital puede también sufrir por problemas de conectividad: la falta de una infraestructura confiable podría reducir el funcionamiento del sistema en un área geográfica particular durante un lapso significativo. Para mitigar esto es importante que los sistemas de ID digital sean diseñados para apoyar tanto las transacciones en línea como las que son offline.

Cuando se trata de proporcionar servicios que salvan vidas, hasta un pequeño error o fallo durante un solo paso del proceso podría provocar un daño severo. A diferencia de los procesos manuales, en donde los humanos están involucrados y pueden intervenir en caso de error, los procesos automatizados traen consigo la posibilidad de que nadie advierta un tecnicismo aparentemente pequeño hasta que sea demasiado tarde.

Potencial para excluir

Según The Engine Room, la biometría puede excluir personas por diversas razones: “Las personas podrían ser reacias a someterse a brindar muestras biométricas debido a desequilibrios culturales, de género o de poder. Obtener las muestras biométricas podría ser más difícil para las personas de piel más oscura o con discapacidades. La toma de huellas dactilares, en particular, podría ser difícil de efectuar correctamente, en especial cuando las de los beneficiarios son menos pronunciadas debido al trabajo manual y rural. Todos estos aspectos podrían inhibir el que las personas den sus datos biométricos, y excluirles por ende del suministro de asistencia”.

Los tipos de errores mencionados en la sección anterior son más frecuentes con respecto a las poblaciones de minorías que tienden a estar subrepresentadas en los conjuntos de datos de entrenamiento, por ejemplo las personas de color o con discapacidades.

La falta de acceso a la tecnología o los menores niveles de competencia tecnológica podrían agravar la exclusión: por ejemplo, la falta de acceso a teléfonos inteligentes o la falta de datos o cobertura de los celulares podría incrementar la exclusión en el caso de los sistemas de ID que dependen de los celulares. Los trabajadores manuales, como ya se dijo, usualmente tienen huellas dactilares gastadas que podrían resultar difíciles de leer cuando se usan lectores biométricos; de igual modo los ancianos podrían experimentar fallos en las coincidencias debido a cambios en sus características faciales, como la pérdida de cabellos u otras señales de envejecimiento o enfermedad, todo lo cual incrementa el riesgo de exclusión.

El World Bank ID4D program explica que a menudo observan tasas diferenciales en la cobertura de los siguientes grupos y sus intersecciones: mujeres y niñas, niños huérfanos y vulnerables; niños pobres; poblaciones rurales; minorías etnolingüísticas; migrantes y refugiados; poblaciones sin Estado o poblaciones en riesgo de estarlo; ancianos; personas con discapacidades; personas no nacionales. Vale la pena enfatizar que estos grupos tienden a ser las poblaciones más vulnerables de la sociedad: precisamente aquellos a quienes la tecnología biométrica y la ID digital busca incluir y empoderar. Cuando consideremos qué tipos de ID o de tecnología biométrica emplear, será crucial evaluar todos estos tipos de posibles errores en relación con la población, y en particular en cómo mitigar la exclusión de ciertos grupos.

Regulación insuficiente

“La tecnología está moviéndose con tanta rapidez que las leyes y regulaciones tienen problemas para mantenerse al día… Al no tener una clara legislación internacional, las empresas en el mundo biométrico a menudo se enfrentan con este dilema: ‘¿Porque puedo hacerlo, debiera hacerlo’”?

ISABELLE MOELLER, DIRECTORA EJECUTIVA DEL BIOMETRICS INSTITUTE

Las tecnologías de identificación digital existen en un entorno regulador en continua evolución, que presenta problemas para proveedores y beneficiarios por igual. Hay muchos intentos de crear estándares internacionales de la biometría y el ID digital, por ejemplo por parte de la Organización Internacional de Normalización (ISO) y la Comisión Electrotécnica Internacional (IEC). Pero más allá del RGPD, aún no hay suficiente regulación internacional para imponer estos estándares en muchos de los países en donde están siendo implementados.

Privatización del ID y dependencia del proveedor

La tecnología detrás de las identidades digitales y la biometría casi siempre es proporcionada por actores del sector privado, a menudo en asociación con gobiernos y organizaciones e instituciones internacionales. El importante papel desempeñado por el sector privado en la creación y el mantenimiento de los ID digitales podría poner tanto a beneficiarios como a organizaciones humanitarias y gobiernos en riesgo de depender del proveedor: si el costo del cambio a un nuevo proveedor del servicio es demasiado costoso u oneroso, la organización/actor podría verse forzada a quedarse con el proveedor original. La dependencia exagerada de un proveedor del sector privado podría también traer consigo riesgos de seguridad (por ejemplo, cuando la tecnología del proveedor original es insegura) y plantear problemas a la asociación con otros servicios y proveedores cuando la tecnología no es interoperable. Por estas razones es importante que la tecnología sea interoperable y que esté diseñada con estándares abiertos.

Retiro del reconocimiento facial de IBM
En junio de 2022, IBM decidió retirar su tecnología de reconocimiento facial del uso de las agencias policiales de EE.UU. Estas decisiones aisladas por parte de actores privados no debieran reemplazar los juicios y regulaciones legales. Debbie Reynolds, funcionaria de privacidad de datos de Women in Identity, cree que el reconocimiento facial no habrá de desaparecer pronto, de modo tal que considerando las muchas fallas que la tecnología tiene actualmente, las compañías debieran concentrarse en mejorarla aún más en lugar de suspenderla. La regulación e imposición internacional es necesaria ante todo y sobre todo, puesto que esto dará a los actores privados directrices e incentivos para diseñar una tecnología responsable y que respete los derechos en el largo plazo.

Inicio

Preguntas

Hágase las siguientes preguntas si está considerando usar herramientas de ID digital como parte de sus programas, para así entender las posibles implicaciones para su trabajo y para su comunidad y asociados.

  1. ¿El beneficiario ha dado su consentimiento informado? ¿Cómo logró comprobar su comprensión? ¿El consentimiento fue de algún modo coercionado, tal vez debido a una dinámica de poder o falta de opciones alternativas?
  2. ¿Cómo se siente la comunidad con respecto a la tecnología? ¿Ésta encaja con las normas culturales y defiende la dignidad humana?
  3. ¿Qué tan asequible es la tecnología para todas las partes interesadas, incluyendo a los sujetos de datos?
  4. ¿Qué tan madura es la tecnología? ¿Cuánto tiempo ha estado en uso, dónde y con qué resultados? ¿Qué tan bien es entendida por todas las partes interesadas?
  5. ¿La tecnología está acreditada? ¿Cuándo y por quién? ¿La tecnología está basada en estándares ampliamente aceptados? ¿Son estándares abiertos?
  6. ¿Cuán interoperable es la tecnología con las otras del ecosistema de identidad?
  7. ¿Qué tan bien se desempeña la tecnología? ¿Cuánto tiempo toma recoger los datos, validar la identidad, etc.? ¿Cuál es la tasa de error?
  8. ¿Cuán resiliente es el sistema digital? ¿Puede operar sin acceso a internet o sin un acceso confiable?
  9. ¿Qué tan fácil es ampliar la tecnología de escala y usarla con poblaciones más grandes u otras?
  10. ¿Cuán segura y precisa es la tecnología? ¿Todos los riesgos de seguridad han sido abordados? ¿Qué métodos tiene en términos de copia de seguridad (por ejemplo, una huella de papel para la votación electrónica)?
  11. ¿La recolección de datos biométricos es proporcional a las tareas a mano? ¿Está recogiendo el monto mínimo de datos necesarios para alcanzar su meta?/div>
  12. ¿Dónde se guardan todos los datos? ¿Qué otras partes podrían tener acceso a esa información? ¿Cómo se protegen los datos?
  13. ¿Algunas de las personas que recibiría ID biométrico o digital forma parte de un grupo vulnerable? Si inscribir digitalmente su identidad podría ponerles en riesgo, ¿cómo podría mitigar esto? (Por ejemplo, evitando una base de datos centralizada, minimizando la cantidad de datos recogidos, tomando precauciones de ciberseguridad, etc.).
  14. ¿Qué poder tiene el beneficiario sobre sus datos? ¿Puede transferirlos a otro lado? ¿Puede solicitar que sus datos sean borrados, y podrían en realidad serlo?
  15. Si está usando ID digital o biometría para automatizar el cumplimiento de los derechos fundamentales o el suministro de servicios públicos cruciales, ¿hay suficiente supervisión humana?
  16. ¿Cuál es el error tecnológico más probable que excluya o dañe? ¿Cómo enfrentará este posible daño o exclusión?

Inicio

Estudios de caso

Aadhaar, India, el sistema biométrico nacional más grande del mundo

Aadhaar es el programa de ID biométrico nacional de India y el más grande del mundo. Es un estudio de caso esencial para entender los posibles beneficios y riesgos de semejante sistema. Aadhaar es controversial. Muchos han atribuido muertes debidas al hambre a los fallos del sistema Aadhaar, que no tiene suficiente supervisión humana para intervenir cuando la tecnología funciona mal e impide que las personas accedan a sus beneficios. Sin embargo, en 2018, la Corte Suprema de India sostuvo la legalidad del sistema diciendo que no viola el derecho de los indios a la privacidad, y que por ende podía seguir operando. “Aadhaar da dignidad a los marginados”, afirmaron los jueces, y que “La dignidad de los marginados supera la privacidad”. Aunque hay riesgos sustanciales, hay también oportunidades significativas para los ID digitales en la India, lo que incluye una mayor inclusividad y accesibilidad para que personas por lo demás no registradas accedan a los servicios sociales y tomen parte en la sociedad.

La tecnología del escaneo de iris de WFP en el campamento de refugiados de Zaatari

En 2016, el Programa Mundial de Alimentos introdujo la tecnología biométrica en el campamento de refugiados de Zaatari en Jordania. “El sistema de WFP depende de los datos del registro biométrico de los refugiados del ACNUR. El sistema es propulsado por IrisGuard, la compañía que desarrolló la plataforma de escaneo del iris, el Jordan Ahli Bank y su contraparte Middle East Payment Services. Una vez que se le ha escaneado el iris a un comprador, el sistema automáticamente se comunica con la base de datos del registro del ACNUR para confirmar la identidad del refugiado, revisa el saldo de la cuenta con el Jordan Ahli Bank y Middle East Payment Services, y luego confirma la compra e imprime un recibo, todo ello en segundos”. Para 2019 el programa, que depende en parte de la tecnología de blockchain, estaba apoyando a más de 100,000 refugiados.

Huduma Namba de Kenia

En enero de 2022, el New York Times reportó que los ID digitales de Kenia podrían excluir a millones de minorías. En febrero, el programa Huduma Namba keniano de ID fue suspendido por un fallo de la corte suprema, el cual detuvo “al plan Huduma Namba de $60 millones hasta que se implementen políticas de protección de datos adecuadas. El panel de tres jueces falló en un informe de 500 páginas, que el National Integrated Identification Management System (NIIMS, Sistema Nacional Integrado de Administración de la Identificación) es constitucional, reporta The Standard, pero las actuales leyes no bastan para garantizar la protección de los datos. […] Meses después de iniciada la captura biométrica, el gobierno aprobó su primera ley de protección de datos a finales de noviembre de 2019, luego de que hubiese intentado rebajar la categoría del papel de comisionado de protección de datos a una agencia ‘semiindependiente’ de protección de datos, con un director nombrado por el presidente. Las medidas de protección de datos aún están por implementarse. El caso fue presentado por grupos de derechos civiles, entre ellos el Nubian Rights Forum y Kenya National Commission on Human Rights (KNCHR), que citando cuestiones de privacidad de los datos y de privacidad, sostuvieron que la forma en que las leyes de protección de datos estaban siendo manejadas en el parlamento impedían la participación pública, y que el plan NIIMS estaba resultando ser étnicamente divisivo en el país, en particular en las zonas de frontera”.

Biometría para la vacunación infantil

Como se explora en The New Humanitarian, 2019: “un proyecto de prueba está siendo lanzado con la apuesta subyacente de que la identificación biométrica es la mejor forma de impulsar las tasas de vacunación, vinculando a los niños con su expediente médico. A miles de niños entre uno y cinco años de edad se les van a tomar las huellas dactilares en Bangladesh y Tanzania, en el programa biométrico más grande de su tipo jamás intentado, anunció recientemente Gavi, la agencia de vacunación con sede en Ginebra. Aunque el plan incluye salvaguardas de protección de datos —y sus patrocinadores se cuidan de no prometer beneficios inmediatos—, está dándose en medio de un debate cada vez más amplio acerca de la protección de datos, la ética de la tecnología, y los riesgos y beneficios de la ID biométrica en la asistencia de desarrollo y humanitaria”.

Financial Action Task Force Case Studies

Véanse también los estudios de caso reunidos por el Grupo de Acción Financiera Internacional (FATF), la organización intergubernamental concentrada en combatir el financiamiento del terrorismo. En 2020 éste dio a luz un recurso exhaustivo acerca de la Identidad Digital, que incluye breves estudios de caso.

Identidad digital en el contexto de la migración y los refugiados

Identidad digital en el contexto de la migración y los refugiados

Para los migrantes y refugiados en Italia, los procesos de recolección de datos de identidad pueden “exacerbar los sesgos existentes, la discriminación o los desequilibrios de poder”. Un reto clave es obtener un consentimiento significativo. Los datos biométricos a menudo se recogen tan pronto los migrantes y refugiados llegan a un país nuevo, en un momento en el cual podrían ser vulnerables y hallarse abrumados. Las barreras del lenguaje exacerban el problema, haciendo que sea difícil dar un contexto adecuado en torno a los derechos a la privacidad. Los datos de identidad los recogen de modo inconsistente distintas organizaciones, cuyas prácticas de protección de datos y de la privacidad varían todas ampliamente.

Usando la ID digital en Ucrania

Usando la ID digital en Ucrania

En 2019 USAID, en asociación con el Ministerio de Transformación Digital de Ucrania, ayudó a lanzar la app Diia, que permite a los ciudadanos acceder a formularios de identificación digitales que, desde agosto de 2021 tienen el mismo valor legal que las formas físicas de identificación. Diia tiene un total de 18 millones de usuarios en Ucrania, y es la app más usada en el país. El apoyo a la app es crucial para el desarrollo digital de Ucrania, y se ha vuelto cada vez más importante a medida que la guerra obliga a muchos a huir, y daña los edificios del gobierno y la infraestructura existente. La app permite a los usuarios guardar pasaportes digitales junto con otros 14 documentos digitales y acceder a 25 servicios públicos, todo ello en línea.

Inicio

Referencias

A continuación encontrará las obras citadas en este recurso.

Este manual aprovecha el trabajo de The Engine Room y el recurso que prepararon en colaboración con Oxfam acerca de la Biometrics in the Humanitarian Sector, publicado en marzo de 2018.

Inicio

Categories

IA generativa

¿Qué es la IA generativa?

La inteligencia artificial generativa (GenAI) se refiere a una clase de técnicas y modelos de inteligencia artificial que crean contenidos nuevos y originales, a partir de los datos con que los modelos fueron entrenados. El output pueden ser textos, imágenes o videos que reflejan o responden al input. La GenAI, al igual que muchas aplicaciones de la inteligencia artificial, puede abarcar muchas industrias. Muchas de estas aplicaciones son en el área del arte y la creatividad, pues GenAI puede usarse para crear arte, música, videojuegos y poesía a partir de los patrones observados en los datos de entrenamiento. Pero su aprendizaje del lenguaje hace que también sea idónea para facilitar la comunicación, por ejemplo como chatbots o agentes conversacionales que pueden simular la conversación humana, traducir lenguajes, síntesis realista del habla o texto a habla. Estos no son sino unos cuantos ejemplos. Este artículo desarrolla las formas en que la GenAI presenta tanto oportunidades como riesgos en el espacio cívico y para la democracia, y qué pueden hacer las instituciones gubernamentales, organizaciones internacionales, activistas y organizaciones de la sociedad civil para aprovechar las oportunidades y cuidarse de los riesgos.

¿Cómo funciona GenAI?

Al centro de GenAI yacen modelos generativos, que son algoritmos o arquitecturas diseñados para aprender los patrones subyacentes y las estadísticas de los datos de entrenamiento. Estos modelos pueden entonces usar este conocimiento aprendido para producir nuevos outputs que semejan la distribución original de los datos. La idea es captar los patrones subyacentes y las estadísticas de los datos de entrenamiento para que el modelo de IA pueda generar nuevos ejemplos que forman parte de la misma distribución.

Pasos del proceso de GenAI

Como vemos en la figura arriba, los modelos de GenAI se desarrollan mediante un proceso en donde una base curada se usa para entrenar redes neuronales con técnicas de aprendizaje automático. Estas redes pueden aprender a identificar patrones en los datos, lo que les permite generar nuevos contenidos o hacer predicciones basadas en la información aprendida. A partir de allí los usuarios pueden ingresar comandos en estos modelos algorítmicos bajo la forma de palabras, números o imágenes, y el modelo produce contenidos que responden sobre la base del input y los patrones aprendidos con los datos de entrenamiento. Como se les entrena con conjuntos de datos cada vez más grandes, los modelos de GenAI alcanzan una gama más amplia de posibles contenidos que pueden generar entre distintos medios, desde audio a imágenes y texto.

Hasta hace poco, la GenAI simplemente imitaba el estilo y la sustancia del input. Por ejemplo, alguien podría ingresar un fragmento de un poema o noticia en un modelo, y éste produciría un poema o noticia completo que sonaba como el contenido original. Un ejemplo de cómo se ve esto en el campo de la lingüística y que usted podría haber visto en su propio correo electrónico, es el lenguaje predictivo del tipo de Google Smart Compose, que completa una oración a partir de la combinación de palabras iniciales que usa y la expectativa probabilística de qué habrá de seguir. Por ejemplo, una máquina que estudia billones de palabras de conjuntos de datos podría generar una expectativa probabilística de una oración que comienza con “por favor ven ___”. En el 95% de los casos, la máquina verá “aquí” como la siguiente palabra, en el 3% a “conmigo” y en el 2% “pronto”. De este modo, al completar oraciones o generar outputs, el algoritmo que aprendió el lenguaje usará la estructura de la oración y la combinación de palabras que había visto antes. Dado que los modelos son probabilísticos, a veces pueden cometer errores que no reflejan las intenciones matizadas del input.

GenAI ahora cuenta con capacidades más expansivas. Pasando más allá del texto, es ahora una herramienta para producir imágenes a partir de textos. Por ejemplo, herramientas tales como DALL-E, Stable Diffusion y MidJourney permiten a un usuario ingresar descripciones de texto a las que el modelo luego usa para producir una imagen correspondiente. Estas imágenes varían en su realismo; por ejemplo, algunas parecen salidas de una escena de ciencia ficción, en tanto que otras parecen una pintura y otras más una fotografía. Vale la pena señalar además que estas herramientas están mejorando constantemente, asegurando así que las fronteras de lo que se puede conseguir con la generación de testo a imagen seguirán expandiéndose.

IA conversacional

Recientes modelos han incorporado el aprendizaje automático a partir de patrones de lenguaje, pero también información factual acerca de la política, la sociedad y la economía. Los últimos modelos son también capaces de tomar comandos de input a partir de imágenes y voz, ampliando aún más su versatilidad y utilidad en diversas aplicaciones.

Recientemente, los modelos que miran a los usuarios y simulan la conversación humana —“IA conversacional”— han proliferado y operan más como chatbots, respondiendo a interrogantes generales y preguntas, de modo muy parecido a cómo funciona un motor de búsqueda. Algunos ejemplos incluyen el pedirle al modelo que responsa a cualquiera de estas preguntas:

  • Presente una foto de un líder político tocando un ukulele en el estilo de Salvador Dalí.
  • Hable acerca de la capital de Kenia, su forma de gobierno, su carácter o acerca de la historia de la descolonización en Asia del Sur.
  • Escriba e interprete una canción acerca de la adolescencia que imite una canción de Drake.

En otras palabras, estos modelos más nuevos pueden funcionar como una fusión de búsqueda de Google y un intercambio con una persona conocedora acerca de su área de especialidad. Al igual que a una persona socialmente atenta, a estos modelos se les puede ir enseñando en el transcurso de una conversación. Si usted fuera a hacer una pregunta acerca de los mejores restaurantes en Manila y el chatbot le responde con una lista que incluye algunos restaurantes de Europa Continental, usted podría entonces manifestar su preferencia por los restaurantes filipinos, lo que haría que el chatbot personalice su output a sus preferencias específicas. El modelo aprende a partir de la retroalimentación, pero modelos como ChatGPT señalarán rápidamente que sólo están adiestrados con datos hasta cierta fecha, lo que quiere decir que algunos restaurantes habrán cerrado, y que podrían haber aparecido otros que han sido galardonados. El ejemplo resalta una tensión fundamental entre los modelos o contenidos actualizados, y la capacidad para refinar a los primeros. Si intentamos tener modelos que aprendan la información a medida que ésta va siendo producida, entonces ellos generarán respuestas actualizadas pero no podrán filtrar los outputs de la mala información, los discursos del odio o las teorías de la conspiración.

Definiciones

GenAI involucra varios conceptos claves:

Modelos generativos: los modelos generativos son una clase de modelos de aprendizaje automático diseñados para crear o generar nuevos outputs de datos que semejen un conjunto de datos de entrenamiento dado. Estos modelos aprenden los patrones y estructuras subyacentes a partir de los datos de entrenamiento y usan dicho conocimiento para generar nuevos outputs de datos similares.

ChatGPT: ChatGPT es un modelo transformador generativo preentrenado (GPT) desarrollado por OpenAI. Si bien los investigadores han desarrollado y usado modelos de lenguaje durante décadas, ChatGPT fue el primer modelo de lenguaje que miraba al consumidor. Entrenado para entender y producir textos similares a los humanos en un entorno de diálogo, fue diseñado específicamente para generar respuestas conversacionales y tomar parte en conversaciones interactivas basadas en textos. En cuanto tal es idóneo para crear chatbots, asistentes virtuales y otras aplicaciones conversacionales de IA.

Red neuronal: una red neural es un modelo de computación que busca funcionar como las neuronas interconectadas del cerebro. Forma parte importante del proceso de aprendizaje profundo porque ejecuta un cálculo, y la fuerza de las conexiones (pesos) entre neuronas determina el flujo de información e influye en el output.

Datos de entrenamiento: los datos de entrenamiento son los que se usan para entrenar a los modelos generativos. Son de crucial importancia, puesto que el modelo aprende patrones y estructuras a partir de ellos para crear nuevos contenidos. Por ejemplo, los datos de entrenamiento en el contexto de la generación de textos consistirían en una gran colección de documentos de texto, oraciones o párrafos. Su calidad y diversidad tienen un impacto significativo sobre el desempeño del modelo de GenAI, porque le ayudan a generar contenidos más relevantes.

Alucinación: en el contexto de GenAI, el término “alucinación” se refiere a un fenómeno en el cual el modelo de IA produce outputs que no tienen base en la realidad o en representaciones precisas de los datos ingresados. En otras palabras, la IA genera contenidos que parecieran existir, pero que en realidad han sido íntegramente inventados y no tienen base alguna en los datos reales con los que fue entrenada. Por ejemplo, un modelo de lenguaje podría producir párrafos de texto que parecen coherentes y factuales, pero con un examen más detenido parecería incluir información falsa, hechos que jamás ocurrieron, o conexiones entre conceptos que son lógicamente defectuosas. El problema se debe al ruido de los datos de entrenamiento. Abordar y minimizar las alucinaciones de GenAI es un reto actual de las investigaciones. Los investigadores y desarrolladores se esfuerzan por mejorar la comprensión que los modelos tienen del contexto, la coherencia y la precisión fáctica, para así reducir la probabilidad d generar contenidos que puedan ser considerados alucinatorios.

Prompt: un prompt de GenAI es un input o instrucción específico dado a un modelo de GenAI para que lo guíe en la producción de un output deseado. En la generación de imágenes, un prompt podría involucrar el especificar el estilo, contenido y otros atributos que desea que la imagen generada tenga. La calidad y relevancia del output generado a menudo dependen de la claridad y especificidad del prompt. Uno bien armado puede llevar a contenidos generados más precisos y deseables.

Métrica de evaluación: evaluar la calidad de los outputs de los modelos de GenAI puede ser difícil, pero varias métricas de evaluación han sido preparadas para evaluar diversos aspectos del contenido generado. Métricas tales como Inception Score, Frechet Inception Distance (FID), y Perceptual Path Length (PPL) intentan medir aspectos de la performance del modelo como la diversidad de las respuestas (de modo tal que no todas suenen como copias la una de la otra), la relevancia (que traten del tema) y la coherencia (que se mantengan en el tema) del output.

Ingeniería de instrucciones: la ingeniería de instrucciones es el proceso de diseñar y refinar los prompts o instrucciones dadas a los sistemas de GenAI —como los chatbots, o los modelos de lenguaje como GPT-3.5— para conseguir las respuestas específicas y deseadas. Esto involucra el armado del texto o interrogante del input de tal modo que el modelo genere outputs que se alineen con la intención del usuario o con la tarea deseada. Es útil para optimizar los beneficios de GenAI, pero requiere de una profunda comprensión del comportamiento y las capacidades del modelo, así como de los requerimientos específicos de la aplicación o tarea. Unos prompts bien armados pueden mejorar la experiencia del usuario al asegurar que los modelos brinden respuestas valiosas y precisas.

Inicio

¿De qué modo es la GenAI relevante en el espacio cívico y para la democracia?

El rápido desarrollo y difusión de las tecnologías de GenAI —en medicina, sostenibilidad ambiental, política y periodismo, entre muchos otros campos— viene creando o habrá de crear enormes oportunidades. Se la viene usando para descubrir medicamentos, el diseño de las moléculas, análisis de imágenes médicas y recomendaciones de tratamiento personalizadas. Se la usa para modelar y simular ecosistemas, predecir cambios ambientales y diseñar estrategias de conservación. Ella ofrece respuestas más accesibles acerca de los procedimientos burocráticos, de modo tal que los ciudadanos entiendan mejor a su gobierno, lo que constituye un cambio fundamental en la forma en que éstos acceden a la información y en cómo es que el gobierno opera. Está apoyando la generación de contenidos escritos tales como artículos, reportes y publicidad.

En todos estos sectores, la GenAI también ha introducido riesgos posibles. Los gobiernos, trabajando con el sector privado y organizaciones de la sociedad civil, están asumiendo distintos enfoques para equilibrar la capitalización de las oportunidades con el cuidarse de otros riegos, reflejando así distintas filosofías acerca de los riesgos y el papel de la innovación en sus respectivas economías, y los distintos precedentes legales y paisajes políticos entre los países. Muchos de los esfuerzos pioneros vienen dándose en los países en donde la IA se usa más, como en los Estados Unidos o en los de la Unión Europea, o en otros de alta tecnología como China. Las conversaciones en torno a la regulación en otros países se han retrasado. En África, por ejemplo, los expertos en la conferencia de Africa Tech Week, en la primavera de 2023, manifestaron su preocupación por el retraso en el acceso de África a la IA, y la necesidad de ponerse al día para cosechar sus beneficios en la economía, la medicina y la sociedad, pero también indicaron los problemas de privacidad y la importancia de tener equipos de investigación en IA diversos, para así cuidarse de los sesgos. Estas conversaciones sugieren que tanto el acceso como la regulación se están desarrollando a distintas tasas en distintos contextos, y que aquellas regiones que actualmente están desarrollando y probando regulaciones podrían ser los modelos a seguir, o al menos brindar las lecciones aprendidas a otros países cuando éstos se regulen.

La Unión Europea se apresuró a regular la IA usando un enfoque escalonado basado en riesgos, que designa como prohibidos a algunos de estos tipos de “usos de alto riesgo” Se considera que son de alto riesgo los sistemas de GenAI que no tienen planes de evaluación y mitigación de riesgos, información clara para los usuarios, explicabilidad, logging en las actividades y otros requisitos más. Según un estudio de la Universidad de Stanford de 2021, la mayoría de los sistemas de GenAI no satisface estos requisitos. Sin embargo, los ejecutivos de 150 compañías europeas respondieron colectivamente en contra de la agresiva regulación, sugiriendo que una reglamentación demasiado estricta de la IA incentivaría a las compañías a establecer su sede fuera de Europa y sofocaría la innovación y el desarrollo económico de la región. Una carta abierta reconoce que cierta regulación podría estar justificada, pero que GenAI será “decisiva” y “poderosa”, y que “Europa no puede darse el lujo de ponerse al margen”.

China ha sido uno de los países más agresivos cuando se trata de la regulación de la IA. La Administración de la Ciberseguridad de China exige que la IA sea transparente, sin sesgos y que no se use para generar desinformación o descontento social. Las normas existentes reglamentan fuertemente los deepfakes: medios sintéticos en que el aspecto de una persona, su rostro y voz inclusive, son reemplazados con el de otra usualmente usando IA. Todo proveedor de servicio que use contenidos generados por GenAI debe asimismo obtener el consentimiento de los sujetos de los deepfakes, etiquetar los outputs, y luego responder a toda desinformación. Sin embargo y como veremos, haber implementado estas regulaciones no quiere decir que los actores estatales no usen ellos mismos la IA con fines maliciosos o en operaciones de influencia.

Los Estados Unidos celebraron una serie de audiencias para entender mejor la tecnología y su impacto en la democracia, pero para septiembre de 2023 aún no contaba con ninguna ley significativa que regulase GenAI. Sin embargo, se han celebrado varias sesiones legislativas para entender mejor la tecnología y prepararse para regularla. La Comisión Federal de Comercio, responsable por la promoción de la protección del consumidor, envió una carta de 20 páginas a OpenAI, el creador de ChatGPT, solicitando respuesta a sus preguntas acerca de la privacidad de los consumidores y la seguridad. El gobierno de los EE.UU. además ha trabajado con las principales empresas de GenAI para establecer salvaguardas de transparencia y seguridad voluntarias a medida que los riesgos y beneficios de la tecnología evolucionan.

António Guterrez, el secretario general de las Naciones Unidas, fue más allá de las iniciativas reguladoras a nivel regional o de los países y propuso la transparencia, la responsabilidad y la supervisión de la IA. En palabras del Sr. Guterrez: “La comunidad internacional cuenta con una larga historia de responder a nuevas tecnologías con el potencial para perturbar nuestras sociedades y economías. Nos hemos reunido en las Naciones Unidas para establecer nuevas normas internacionales, firmar nuevos tratados y establecer nuevas agencias globales. Si bien muchos países han solicitado medidas e iniciativas distintas con respecto a la gobernanza de la IA, esto necesita tener un enfoque universal”. Esta afirmación apunta al hecho que el espacio digital no conoce fronteras, y que las tecnologías de software innovadas en un país inevitablemente habrán de cruzarlas, lo que sugiere que unas normas o restricciones significativas de la GenAI probablemente necesitarán de un enfoque internacional coordinado. Con este fin, algunos investigadores han propuesto una Organización Internacional de Inteligencia Artificial que ayude a certificar el cumplimiento de estándares internacionales sobre la seguridad de la IA, y que también reconozcan la naturaleza inherentemente internacional de su desarrollo y despliegue.

Inicio

Oportunidades

Mejorar la representación

Uno de los principales retos en democracia y para la sociedad civil es asegurar que las voces de los electores sean escuchadas y representadas, lo que involucra en parte el que los ciudadanos mismos tomen parte en el proceso democrático. La GenAI podría ser útil para dar voz tanto a quienes formulan las políticas como a los ciudadanos, una forma de comunicarse con mayor eficiencia y mejorar así la confianza en las instituciones. Otro camino para mejorar la representación es que la GenAI presente datos que den a los investigadores y a los que diseñan las políticas, una oportunidad para entender diversas cuestiones sociales, económicas y medioambientales, así como la preocupación que los electores tienen con respecto a ellas. Por ejemplo, GenAI podría usarse para sintetizar grandes volúmenes de comentarios entrantes de líneas abiertas o correos electrónicos, y así entender mejor las preocupaciones desde abajo que los ciudadanos tienen con respecto a su democracia. A decir verdad, estas herramientas de análisis de datos necesitan asegurar la privacidad de la información, pero sí pueden proporcionar una visualización de los datos para que los líderes institucionales entiendan qué le interesa a la gente.

Fácil acceso de lectura

Muchas regulaciones y leyes son densas y difíciles de entender para cualquiera fuera del establishment que toma las decisiones. Estos retos a la accesibilidad se hacen aún más grandes para las personas con discapacidades tales como la discapacidad cognitiva. La GenAI puede resumir extensas leyes y traducir densas publicaciones gubernamentales en un formato de fácil lectura, con imágenes y lenguaje simple. Las organizaciones de la sociedad civil pueden también usarla para diseñar campañas en los medios sociales y otros contenidos para que sean más accesibles a quienes tienen alguna discapacidad.

Participación cívica

La GenAI puede mejorar la participación cívica generando contenidos personalizados a intereses y preferencias individuales mediante una combinación de análisis de datos y aprendizaje automático. Esto podría involucrar la generación de materiales informativos, resúmenes de noticias o visualizaciones que atraigan a los ciudadanos y les alienten a tomar parte en las discusiones y actividades cívicas. La industria del marketing hace tiempo ha aprovechado el hecho que es más probable que los contenidos específicos a consumidores individuales despierten su consumo o participación, y esta idea vale en la sociedad civil. Cuanto más esté personalizado y focalizado el contenido en una persona específica o en una categoría de persona, tanto más probable es que ella responda. Una vez más, el uso de los datos para ayudar a clasificar las preferencias de los ciudadanos depende inherentemente de los datos de los usuarios. No todas las sociedades suscribirán este uso que se les da. Por ejemplo, la Unión Europea ha mostrado cierto recelo con respecto a la privacidad, y ha sugerido que una sola talla no servirá para todos en términos de este uso particular de la GenAI para la participación cívica.

Habiendo dicho esto, esta herramienta podría ayudar a eliminar la apatía de los votantes, la cual podría conducir a un desencanto y alejamiento de la política. En lugar de comunicaciones repetitivas que urgen a los jóvenes a que voten, la GenAI podría, por ejemplo, producir un contenido inteligente que se sabe resuena entre las jóvenes o los grupos marginados, ayudando así a contrarrestar algunas de las barreras adicionales a la participación que los grupos marginados enfrentan. En un entorno educativo, el contenido personalizado podría usarse para atender a las necesidades de los estudiantes en diferentes regiones y con distintas capacidades de aprendizaje, proporcionándose al mismo tiempo tutores virtuales o herramientas de aprendizaje del lenguaje.

Deliberación pública

Otra forma en que la GenAI podría hacer posible la participación y deliberación públicas sería mediante chatbots y agentes conversacionales impulsados por GenAI. Estas herramientas pueden facilitar la deliberación pública involucrando a los ciudadanos en el diálogo, abordando sus preocupaciones y ayudándoles a navegar complejas cuestiones cívicas. Estos agentes pueden proporcionar información, responder preguntas y estimular la discusión. Algunos municipios ya han lanzado asistentes virtuales y chatbots propulsados por la IA que automatizan los servicios cívicos y que optimizan procesos tales como las preguntas de los ciudadanos, los pedidos de servicio y las labores administrativas. Esto podría llevar a una mayor eficiencia y capacidad de respuesta en las operaciones del gobierno. La falta de recursos municipales —de personal, por ejemplo— podría significar que los ciudadanos tampoco cuentan con la información que necesitan para ser participantes significativos de su sociedad. Con recursos relativamente limitados se puede entrenar a un chatbot con datos locales, para que brinde la información específica necesaria para cubrir la brecha.

Los chatbots pueden ser entrenados en múltiples lenguajes, lo que hace que la información y los recursos cívicos puedan ser más accesibles a poblaciones diversas. Ellos pueden asistir a las personas con discapacidades generando formatos alternativos para la información, como descripciones de audio o conversiones de texto a habla. La GenAI puede ser entrenada con dialectos y lenguas locales, promoviendo a las culturas indígenas y haciendo que el contenido digital sea más accesible para poblaciones diversas.

Es importante señalar que la aplicación de GenAI debe hacerse prestando sensibilidad a los contextos locales, las consideraciones culturales y de privacidad. Adoptar un enfoque de diseño humano-céntrico a la colaboración entre los investigadores de IA, programadores, grupos de la sociedad civil y comunidades locales podría ayudar a asegurar que estas tecnologías sean adaptadas apropiada y equitativamente para abordar las necesidades y retos específicos de la región.

Analítica predictiva

La GenAI puede también usarse en la analítica predictiva para predecir posibles resultados de decisiones de política. Por ejemplo, los modelos generativos propulsados por la IA pueden analizar los datos locales del suelo y el clima para optimizar el rendimiento de los cultivos y recomendar prácticas agrícolas idóneas para regiones específicas. Se la puede usar para generar simulaciones realistas para predecir posibles impactos y preparar estrategias de respuesta a los desastres para las operaciones de socorro. Puede analizar las condiciones medioambientales y la demanda de energía locales para optimizar el despliegue de fuentes energéticas renovables como la energía solar y eólica, promoviendo así soluciones energéticas sostenibles.

Al analizar los datos históricos y generar simulaciones, los decisores de políticas pueden tomar decisiones más informadas y basadas en las evidencias para la mejora de la sociedad. Estas mismas herramientas pueden ayudar no sólo a quienes formulan las políticas, sino también a las organizaciones de la sociedad civil a generar visualizaciones de datos o resumir información acerca de las preferencias ciudadanas. Esto puede ayudar a producir contenidos más informativos y oportunos acerca de las preferencias ciudadanas y el estado de cuestiones claves, como el número de personas que no tienen casa.

Sostenibilidad medioambiental

La GenAI se puede usar en formas que conduzcan a un impacto ambiental favorable. Podría, por ejemplo, usársela en campos tales como la arquitectura y el diseño de productos para optimizar los diseños para que sean más eficientes. Se la puede usar para optimizar procesos en la industria energética que puedan mejorar la eficiencia energética. También tiene el potencial para ser usada en logística, en donde GenAI puede optimizar las rutas y cronogramas, reduciendo así el consumo y las emisiones de combustible.

Inicio/a>

Riesgos para la democracia

Para aprovechar el potencial de GenAI para la democracia y el espacio cívico es necesario contar con un enfoque equilibrado que aborde los problemas éticos, fomente la transparencia, promueva el desarrollo tecnológico inclusivo e involucre a múltiples partes interesadas. La colaboración entre investigadores, decisores de política, la sociedad civil y diseñadores de tecnología puede ayudar a asegurar que GenAI contribuya positivamente a los procesos democráticos y la participación cívica. La capacidad de generar grandes volúmenes de contenido creíble podría crear oportunidades para que los decisores de política y los ciudadanos se conecten mutuamente, pero estas mismas capacidades de los modelos avanzados de GenAI crean también posibles riesgos.

Desinformación en línea

Aunque GenAI ha mejorado, los modelos siguen alucinando y producen outputs que suenan convincentes, por ejemplo, hechos o historias que suenan plausibles pero que no son correctos. Si bien hay muchos casos en los cuales estas alucinaciones son benignas —como una pregunta científica acerca de la edad del universo—, hay otros casos en los cuales las consecuencias serían desestabilizadoras política o socialmente.

Dado que la GenAI mira al público, es posible que las personas utilicen estas tecnologías sin entender sus limitaciones. Podrían entonces esparcir desinformación inadvertidamente a partir de una respuesta imprecisa acerca de política o historia, por ejemplo, una afirmación inexacta acerca de un dirigente político que termina encendiendo un entorno político ya de por sí agrio. La propagación de desinformación generada por IA que inunde el ecosistema informativo, tiene el potencial para reducir la confianza en dicho ecosistema como un todo, haciendo así que la gente sea escéptica de los hechos y se conforme con las creencias de sus círculos. La propagación de desinformación podría significar que los miembros de la sociedad crean cosas que no son ciertas acerca de los candidatos políticos, los procedimientos electorales o las guerras.

Los ejemplos de GenAI que genera desinformación incluyen no sólo textos sino también deepfakes. Si bien estos últimos tienen posibles aplicaciones benévolas, como entretenimiento o en los efectos especiales, también pueden ser mal utilizados para crear videos sumamente realistas que difunden información falsa o eventos fabricados, que hacen que para los espectadores sea difícil discernir entre los contenidos reales y falsos, lo que podría a su vez conducir a la propagación de la desinformación y minar la confianza en los medios. En relación con esto se les podría usar en la manipulación política, en donde los videos de políticos o figuras públicas son alterados para hacer que parezcan decir o hacer cosas que podrían difamarles, dañar su reputación o influir en la opinión pública.

La GenAI hace que sea más eficiente generar y amplificar la desinformación, creada intencionalmente con miras a engañar a un lector, porque puede producir información imprecisa aparentemente original y creíble en gran cantidad. Ninguna de las historias o comentarios se repetiría necesariamente, lo que podría llevar a una narrativa al parecer aún más creíble. Las campañas de desinformación extranjeras a menudo han sido identificadas a partir de errores gramaticales o en las grafías, pero la capacidad de usar estas nuevas tecnologías de GenAI quiere decir la creación eficiente de un contenido que suena nativo y que puede engañar a los filtros usuales que una plataforma podría usar para identificar las campañas de desinformación de gran escala. La GenAI podría también hacer que proliferen los bots sociales que son indistinguibles de los humanos, y que pueden microfocalizarse en personas con desinformación personalizada.

Campañas de astroturfing

Como las tecnologías de GenAI miran al público y son fáciles de usar, se las puede usar para manipular no sólo al público de masas, sino también a distintos niveles de las elites gubernamentales. Se espera que los líderes políticos se comprometan con las preocupaciones de sus electores, tal como queda reflejado en comunicaciones tales como mensajes electrónicos que revelan la opinión y el sentir públicos. ¿Pero qué pasaría si un actor malicioso usase ChatGPT u otro modelo de GenAI para crear grandes volúmenes de contenidos de apoyo y los distribuye entre los líderes políticos como si viniesen de ciudadanos? Esta sería una forma de astroturfing, una práctica engañosa que esconde la fuente de un contenido con miras a crear la percepción de un apoyo de base. Las investigaciones sugieren que los funcionarios electos en los Estados Unidos han sido susceptibles a estos ataques. Los líderes podrían muy bien permitir que este volumen de contenido influya en su agenda política, aprobando leyes o estableciendo burocracias en respuesta a esta aparente oleada de apoyo, que fue en realidad fabricada por la capacidad de generar grandes volúmenes de contenidos que parecen creíbles.

Sesgos

GenAI también despierta preocupaciones por discriminación y sesgos. Si los datos de entrenamiento usados para crear el modelo generativo contienen información sesgada o discriminatoria, el modelo a su vez producirá outputs sesgados u ofensivos. Esto podría perpetuar estereotipos nocivos y contribuir a violaciones de la privacidad de ciertos grupos. De entrenarse a un modelo de GenAI con un conjunto de datos que contiene patrones de lenguaje sesgados, podría producir textos que refuerzan los estereotipos de género. Podría, por ejemplo, asociar ciertas profesiones o roles con un género particular, incluso cuando no hay ninguna conexión inherente. Si un modelo de GenAI es entrenado con un conjunto de datos con una representación racial o étnicamente distorsionada, podría producir imágenes que involuntariamente muestren a ciertos grupos de modo negativo o estereotipado. De ser entrenados con conjuntos de datos sesgados o discriminatorios, estos modelos podrían asimismo producir contenidos que son culturalmente insensibles o que emplean términos peyorativos. La GenAI de texto a imagen desfigura los rasgos de una “mujer negra” en gran cantidad, lo que resulta dañino para los grupos así distorsionados. Esto se debe a la sobrerrepresentación de grupos no negros en los conjuntos de datos de entrenamiento. Una solución sería tener conjuntos de datos más balanceados y diversos en lugar de contar únicamente con datos de lenguaje occidentales y en inglés, que contendrían sesgos occidentales y crearían sesgos por carecer de otras perspectivas y lenguas. Otra sería entrenar al modelo para que los usuarios no puedan “abrirlo” para que vomite contenidos racistas o inapropiados.

Sin embargo, la cuestión del sesgo se extiende más allá de unos datos de entrenamiento que son abiertamente racistas o sexistas. Los modelos de IA extraen conclusiones a partir de puntos de datos, de modo tal que un modelo de IA podría examinar los datos de las contrataciones y ver que el grupo demográfico que más éxito ha tenido en ser contratado en una compañía tecnológica son varones blancos, y concluir así que éstos son los más calificados para trabajar en una compañía de estas, cuando en realidad la razón por la cual son más exitosos podría ser que no enfrentan las mismas barreras estructurales que afectan a otros grupos, como el no poder pagar un título tecnológico, tener que enfrentar el sexismo en los salones, o el racismo del departamento de contrataciones.

Privacidad

La GenAI hace que surjan varias preocupaciones en torno a la privacidad. Una de ellas es que los conjuntos de datos podrían contener información sensible o personal. Ésta podría quedar expuesta o ser mal empleada a menos que haya sido anonimizada o protegida debidamente. Como se espera que los outputs de GenAI sean realistas, los contenidos generados que semejan personas reales podrían usarse para volver a identificar a personas cuyos datos debían ser anonimizados, minando también así las protecciones de privacidad. Es más, durante el proceso de entrenamiento los modelos de GenAI podrían involuntariamente aprender y memorizar partes de sus datos de entrenamiento que incluyen información sensible o privada. Esto podría generar una filtración de datos cuando se generan nuevos contenidos. Los decisores de políticas y las mismas plataformas de GenAI aún no han resuelto el problema de cómo proteger la privacidad en los conjuntos de datos, outputs, o incluso de los mismos prompts, que pueden incluir datos sensibles o reflejar las intenciones de un usuario de modos que podrían resultar dañinos de no ser seguros.

Copyright y propiedad intelectual

Uno de los principales motivos de preocupación en torno a GenAI es quién posee el copyright de los trabajos que genera. Las leyes de copyright atribuyen la autoría y la propiedad a los creadores humanos. Sin embargo, determinar la autoría, el pilar fundamental del copyright, en el caso de los contenidos generados por IA resulta difícil. No queda claro si el creador debiera ser el programador, el usuario, el sistema de IA mismo, o una combinación de estas partes. Los sistemas de IA aprenden a partir de contenidos con copyright para generar nuevas obras que se parezcan a los materiales protegidos por los derechos de autor. Esto hace que surjan preguntas acerca de si el contenido generado por la IA debiera considerarse algo derivado, y que por ende infringe el derecho del tenedor del copyright original, o si el uso de GenAI debiera ser considerado un uso justo, que permite emplear de modo limitado materiales protegidos por los derechos de autor sin permiso de quien tiene el copyright. Como la tecnología aún es nueva, los marcos legales para juzgar su uso justo contra la violación de los derechos de autor siguen en evolución y podrían verse de distinto modo, dependiendo de la jurisdicción y de su cultura legal. Mientras este corpus legal se desarrolla, debiera equilibrarse la innovación con un justo trato a los creadores, los usuarios y los programadores de los sistemas de IA.

Impactos sobre el medio ambiente

Entrenar a los modelos de GenAI, y el uso y transmisión de datos, utiliza recursos computacionales significativos, a menudo con hardware que consume energía y que puede contribuir a las emisiones de carbono si no funciona con fuentes renovables. Estos impactos pueden mitigarse en parte mediante el uso de energía renovable y optimizando los algoritmos para reducir la demanda de capacidad de procesamiento.

Acceso desigual

Aunque el acceso a las herramientas de GenAI está difundiéndose más, el surgimiento de esta tecnología corre el riesgo de ampliar la brecha tecnológica entre aquellos que tienen acceso a esta tecnología y quienes no lo tienen. Hay varias razones por las cuales el acceso desigual —y sus consecuencias— podría ser particularmente pertinente en el caso de GenAI:

  • La capacidad de procesamiento requerida es enorme, lo que podría llevar al límite a la infraestructura de los países que tienen un inadecuado suministro energético, acceso a internet, almacenaje de datos o informática en la nube.
  • Los países de ingresos bajos y medios (LMIC) pueden carecer del conjunto de alto talento técnico necesario para la innovación e implementación de la IA. Un informe sugiere que todo el continente africano tiene 700,000 programadores en comparación con California, que tiene 630,000. Este problema se ve exacerbado por el hecho que una vez calificados, los programadores de los LMIC a menudo parten a otros países en donde pueden ganar más.
  • La corriente principal de modelos que miran al consumidor como ChatGPT fueron entrenados con un puñado de lenguajes, entre ellos inglés, español, alemán y chino, lo que quiere decir que las personas que buscan usar GenAI en estas lenguas tienen ventajas de acceso que no tienen los hablantes de suajili, por ejemplo, para no decir nada de los dialectos locales.
  • Localizar a GenAI requiere grandes cantidades de datos del contexto particular, y los entornos con bajos recursos a menudo dependen de los modelos diseñados por las más grandes compañías tecnológicas de los Estados Unidos o China.

El resultado final podría ser el desempoderamiento de los grupos marginados, que tienen menos oportunidades y medios para compartir sus historias y perspectivas a través de contenidos generados por la IA. Como dichas tecnologías podrían mejorar las perspectivas económicas de una persona, el acceso desigual a GenAI podría a su vez incrementar la desigualdad económica, pues quienes tienen acceso pueden participar en expresión creativa, generación de contenidos e innovación empresarial de modo más eficiente.

Inicio

Preguntas

Hágase las siguientes preguntas si está pensando llevar a cabo un proyecto y está considerando si usar GenAI en él:

  1. ¿Hay casos en que la interacción individual entre personas podría ser más eficaz, más empática e incluso más eficiente que si se usa la IA en las comunicaciones?
  2. ¿Qué preocupaciones éticas podría generar el uso de GenAI, ya sea de privacidad o por sesgos? ¿Pueden mitigarse?
  3. ¿Podrían emplearse las fuentes locales de datos y contenido para crear una GenAI localizada?
  4. ¿Hay medidas legales, reguladoras o de seguridad que le protegerán del mal uso de GenAI, y que protegerán a las poblaciones que podrían ser vulnerables a dicho mal uso?
  5. ¿Pueden la información sensible o de propiedad privada ser protegidas en el proceso de desarrollo de conjuntos de datos como datos de entrenamiento para los modelos de GenAI?
  6. ¿De qué modos puede la tecnología de GenAI cubrir la brecha digital e incrementar el acceso digital en una sociedad dependiente de la tecnología (o a medida que las sociedades se hacen más dependientes de ésta)? ¿Cómo podemos mitigar la tendencia de las nuevas tecnologías de GenAI a ampliar la brecha digital?
  7. ¿Hay formas de conocimientos digitales para los miembros de la sociedad, la sociedad civil o una clase política que puedan mitigar los riesgos de deepfakes o de textos de desinformación generados a gran escala?
  8. ¿Cómo podría mitigar los impactos medioambientales negativos asociados con el uso de GenAI?
  9. ¿Podría GenAI usarse para personalizar los enfoques educativos, el acceso al gobierno y la sociedad civil, y las oportunidades para la innovación y el progreso económico?
  10. ¿Los datos de su modelo fueron entrenados con datos precisos, representativos de todas las identidades, incluyendo grupos marginados? ¿Qué sesgos inherentes podría tener el conjunto de datos?

Inicio

Estudios de caso

GenAI surgió en la primera mitad de 2023 de un modo mayormente difundido y orientado al consumidor, lo que limitó el número de estudios de casos del mundo real. Esta sección sobre dichos estudios incluye por ello casos en donde las formas de GenAI resultaron problemáticas en términos de engaños o desinformación; formas en que ella podría concebiblemente afectar a todos los sectores, la democracia inclusive, para incrementar las eficiencias y el acceso; y experiencias o discusiones de los tradeoffs entre privacidad e innovación específicos a enfoques nacionales.

Experiencias con la desinformación y la decepción

En Gabón, un posible deepfake tuvo un papel significativo en la política del país. El presidente supuestamente tuvo un derrame pero no había sido visto en público. El gobierno finalmente emitió un video la víspera del año nuevo de 2018, que buscaba calmar las preocupaciones en torno a su salud, pero los críticos sugirieron que en las imágenes tenía patrones de pestañeo y expresiones faciales no auténticas, y que se trataba de un deepfake. Los rumores de que el video era falso proliferaron, lo que hizo que muchos concluyeran que el presidente no gozaba de buena salud, lo que a su vez llevó a un intento de golpe debido a la creencia en que la capacidad del presidente para resistir al intento de derrocamiento estaría debilitada. El ejemplo muestra las serias ramificaciones que la pérdida de confianza tiene en el entorno informativo.

En marzo de 2023, una imagen hecha con GenAI del papa con una chaqueta puffer de Balenciaga se hizo viral en internet, engañando a los lectores debido al parecido de la imagen con el pontífice. Balenciaga había tenido una violenta reacción varios meses antes debido a una campaña publicitaria que mostraba a niños con arneses y bondage. Que el papa al parecer vistiera con Balenciaga implicaba que él y la Iglesia Católica abrazaban dichas prácticas. El consenso en internet finalmente concluyó que se trataba de un deepfake, tras identificar señales reveladoras como una borrosa taza de café y los problemas de resolución con el párpado del papa. Ello no obstante, el incidente mostró con qué facilidad se pueden generar estas imágenes y engañar a los lectores. También mostró la forma en que las reputaciones pueden quedar manchadas debido a un deepfake.

En septiembre de 2023, la Microsoft Threat Initiative presentó un informe que señalaba numerosos casos de operaciones de influencia en línea. Microsoft identificó antes de las elecciones de 2022, que cuentas de medios sociales afiliadas al Partido Comunista de China (PCC) estaban haciéndose pasar por votantes estadounidenses y respondiendo a comentarios, para así influir en las opiniones a través del diálogo y la persuasión. En 2023, Microsoft observó entonces el uso de imágenes creadas con IA, que mostraban imágenes estadounidenses como la Estatua de la Libertad bajo una luz negativa. Estas imágenes tenían las huellas de la IA, como el número errado de dedos en una mano, mas a pesar de todo eran provocadoras y convincentes. A comienzos de marzo de 2023, Meta halló también al PCCh involucrado en una operación de influencia publicando comentarios críticos de la política exterior estadounidense, a los que Meta logró identificar debido a los tipos de grafías y de errores gramaticales en combinación con la hora del día (horas apropiadas para China antes que para los EE.UU.).

Aplicaciones actuales y futuras

A medida que las herramientas de GenAI mejoran se irán haciendo aún más eficaces para estas campañas de influencia en línea. Por otro lado, las aplicaciones con resultados positivos también se irán haciendo más eficaces. GenAI, por ejemplo, irá cubriendo cada vez más las brechas en los recursos del gobierno. Un estimado de cuatro billones de personas carecen de los servicios básicos de salud, y una limitación significativa es el bajo número de proveedores del cuidado de salud. Si bien GenAI no es un sustituto del acceso directo a un proveedor individual del cuidado de salud, sí puede al menos llenar ciertas brechas en ciertos entornos. Ada Health un chatbot para el cuidado de la salud, funciona con OpenAI y puede comunicarse con las personas con respecto a sus síntomas. ChatGPT ha demostrado su capacidad para pasar los exámenes de calificación médica; si bien no se le debiera usar como un sustituto de un médico, en los entornos limitados en recursos podría al menos brindar una evaluación inicial, ahorrando así costos, tiempo y recursos. En relación con esto, es posible utilizar herramientas análogas en entornos de salud mental. El Foro Económico Mundial reportó en 2021 que un estimado de 100 millones de personas en África tienen depresión clínica, pero que sólo hay 1.4 proveedores de salud por cada 100,000 personas, en comparación con el promedio global de 9 proveedores/100,000 personas. La gente necesitada de cuidado y que no cuenta con mejores opciones confía cada vez más en chatbots de salud mental en tanto se logra implementar un enfoque más completo, porque si bien el nivel del cuidado que pueden brindar es limitado, es mejor que nada. Estos recursos basados en GenAI no están libres de problemas–posibles problemas de privacidad y respuestas subóptimas—, y las sociedades y personas tendrán que establecer si estas herramientas son mejores que las alternativas, pero pueden ser tenidos en cuenta en entornos de recursos limitados.

Otros escenarios futuros involucran el uso de GenAI para incrementar la eficiencia del gobierno en una serie de tareas. Uno de estos escenarios comprende a un burócrata del gobierno formado en economía, y al que se le asigna a trabajar en un programa básico de políticas relacionado con el medio ambiente. Esta persona inicia el programa pero entonces introduce la pregunta en una herramienta de GenAI, la cual ayuda a preparar un borrador de ideas, recuerda a nuestra persona puntos a los que había olvidado, identifica unos marcadores legales internacionales relevantes que son claves, y luego traduce el programa del inglés al francés. Otro escenario involucra a un ciudadano que intenta averiguar en dónde votar, pagar impuestos, aclarar los procedimientos gubernamentales, entender las políticas en el caso de ciudadanos que están intentando decidir entre candidatos, o explicar ciertos conceptos de políticas. Estos escenarios ya son posibles y accesibles a todo nivel dentro de la ciudad, y sólo irán haciéndose más prevalentes a medida que las personas se vayan familiarizando con la tecnología. Es, sin embargo, importante que los usuarios entiendan las limitaciones de la tecnología y cómo usarla de modo apropiado para prevenir situaciones en las cuales estén propagando desinformación, o no logren hallar información precisa.

En un contexto electoral, GenAI puede ayudar a evaluar aspectos de la democracia, como la integridad electoral. Por ejemplo, la tabulación manual de votos toma tiempo y es onerosa. Sin embargo, nuevas herramientas de IA han tenido un papel a la hora de establecer el grado de irregularidades electorales. En Kenia se usaron las redes neuronales para “leer” formularios de papel remitidos a nivel local y enumerar el grado de irregularidades electorales, para luego correlacionarlas con los resultados y juzgar si dichas irregularidades fueron el resultado del fraude o de errores humanos. Estas tecnologías podrían en realidad aliviar parte de la carga laboral de las instituciones electorales. En el futuro, los avances realizados por la GenAI podrán proporcionar una visualización de los datos que aliviará aún más la carga cognitiva de los esfuerzos realizados para adjudicar la integridad electoral.

Enfoques del dilema privacidad-innovación

Países como el Brasil han manifestado su preocupación con el posible mal uso dado a GenAI. Tras la presentación de ChatGPT en noviembre de 2022, el gobierno brasileño recibió un detallado informe escrito por expertos académicos y legales, así como por los jefes de compañías e integrantes de un comité nacional de protección de datos, quienes urgieron que dichas tecnologías fueran reguladas. El informe planteó tres motivos principales de preocupación:

  • Que los derechos ciudadanos sean protegidos asegurando que “no haya discriminación y que se corrijan los sesgos directos, indirectos, ilegales o abusivos”, así como que haya claridad y transparencia con respecto a cuándo es que los ciudadanos están interactuando con la IA.
  • Que el gobierno categorice los riesgos e informe a los ciudadanos de los posible riesgos. Según este análisis, los sectores de “alto riesgo” incluían a los servicios esenciales, la verificación biométrica y el reclutamiento laboral, en tanto que el “riesgo excesivo” comprendía la explotación de personas vulnerables y el puntaje social (un sistema que sigue el comportamiento individual en pos de su confiabilidad, y que pone en una lista negra a quienes tienen demasiados deméritos o su equivalente), prácticas ambas que debieran examinarse detenidamente.
  • Que el gobierno dé medidas de gobernanza y sanciones administrativas, primero estableciendo cómo es que se penalizaría a las empresas que las infringieran, y en segundo lugar recomendando una pena del 2% de la renta para un incumplimiento menor, y el equivalente a 9 millones de USD para daños más serios.

En 2023, al momento de escribir estas líneas, el gobierno estaba debatiendo los siguientes pasos, pero el informe y las deliberaciones son ilustrativas de las preocupaciones y recomendaciones dadas en el Sur Global con respecto a GenAI.  

En la India, el gobierno hizo frente a la IA en general, y a GenAI en particular, con una mirada menos escéptica que echa luz sobre las diferencias en cómo es que los gobiernos podrían abordar estas tecnologías, y las bases de dichas diferencias. En 2018, el gobierno indio propuso una Estrategia Nacional para la IA que priorizaba su desarrollo en la agricultura, la educación, el cuidado de la salud, las ciudades y la movilidad inteligentes. En 2020, la Estrategia Nacional de Inteligencia Artificial pidió que todos los sistemas fueran transparentes, responsables y que estuvieran libres de sesgos. En marzo de 2021, el gobierno indio anunció que usaría una regulación de “toque ligero” y que el riego más grande no venía de la IA, sino de no aprovechar las oportunidades que ella presenta. India cuenta con un sector de investigación y desarrollo tecnológicos avanzado que está listo para beneficiarse con la IA. Según el ministro de electrónica y tecnología de la información, promover este sector es “significativo y estratégico”, pero reconoció que se necesitarían algunas políticas y medidas de infraestructura que enfrentaran los sesgos, la discriminación y los problemas éticos.

Inicio

Referencias

Find below the works cited in this resource.

Recursos adicionales

Inicio

Categories

IdC & Sensores

¿Qué es la IdC y qué son los sensores?

La Internet de las Cosas (IdC) se refiere a una red de objetos conectados a través de la internet. Los dispositivos conectados por la IdC incluyen artículos cotidianos como teléfonos, timbres de puertas, autos, relojes y máquinas de lavar. Ella une a estos aparatos para una serie de tareas, procesos y entornos, desde el alumbrado público en una red eléctrica urbana “inteligente” a refrigeradores en un “hogar inteligente”, e incluso a marcapasos “inteligentes” dentro de cuerpos humanos, que forman parte de la llamada categoría de la tecnología inteligente “vestible”. Una vez instalados y conectados, estos aparatos pueden comunicarse entre sí con una reducida participación humana.

Buzo científico en Indonesia. La estructura de monitoreo autónomo de los arrecifes de coral usa sensores para apoyar los esfuerzos de conservación. Crédito de la fotografía: Christopher Meyer.

Un componente integral de la IdC son los sensores, dispositivos que detectan y responden a cambios en un entorno a partir de diversas fuentes como luz, temperatura, movimiento y presión. Cuando se les coloca en dispositivos y se les conecta a una red de IdC, los sensores pueden compartir datos en tiempo real con otros aparatos conectados y sistemas de gestión.

Es importante señalar que la IdC es un un concepto en evolución, que se expande continuamente para incluir más dispositivos e incrementar su nivel de conexión y comunicación.

¿Cómo funciona la IDC y cómo lo hacen los sensores?

Los dispositivos de la IdC se conectan inalámbricamente a una red de internet. Se les da identificadores únicos (UID) y tienen la capacidad de transmitir datos del uno al otro por la red sin intervención humana. Los sistemas de la IdC pueden combinar el uso de los dispositivos vestibles, sensores, robots, analítica de datos, inteligencia artificial y muchas otras tecnologías.
Los sensores por lo general trabajan tomando input como la luz, el calor, presión, movimiento u otro estímulo físico, y convirtiéndolo en un output al cual se puede entonces transmitir a un usuario humano mediante algún tipo de señal o interface (por ejemplo, la pantalla de un termómetro digital o el sonido de una alarma de incendios). El output podría también transmitirse directamente a un sistema más amplio y extenso como una planta industrial. Los dispositivos usualmente tienen múltiples sensores: por ejemplo, un smartphone tiene una pantalla táctil, una cámara, GPS y un acelerómetro para medir la aceleración.

Los sensores pueden ser “inteligentes” o “no inteligentes”, lo que quiere decir que pueden conectarse a la Internet o no. Los inteligentes aceptan inputs de su entorno y los convierten en datos digitales usando capacidades de procesamiento integradas. Estos datos son entonces transmitidos para ser procesados aún más. Tomemos por ejemplo un sistema “inteligente” de riego: se podría usar un medidor de agua conectado a Internet para medir continuamente la cantidad y calidad del agua en un reservorio. Estos datos serían entonces transmitidos en tiempo real a una interface de gestión del agua que un humano podría interpretar para ajustar el suministro de agua, o el sistema de riego podría por el contrario programarse para que se autoajuste sin intervención humana, cerrándose automáticamente cuando el agua cae debajo de cierta calidad o cantidad.

Los sensores inteligentes pueden ser considerados dispositivos de IdC por sí mismos. El sensor de un teléfono móvil que automáticamente ajusta el brillo de su pantalla a partir de la luz ambiental es un ejemplo de sensor inteligente. La detección remota involucra el uso de sensores en aplicaciones en las cuales el instrumento sensor no hace contacto físico con el objeto o fenómeno al cual se está midiendo y grabando, por ejemplo imágenes satelitales, radar, fotografía aérea o videografía con drones. La Administración Nacional de Aeronáutica y el Espacio (NASA) tiene una lista de los tipos de sensores usados en los instrumentos de detección remota. Este breve video presenta una introducción básica a los distintos tipos de sensores.

Inicio

¿De qué modos la IdC y los sensores son relevantes en el espacio cívico y para la democracia?

La IdC ha sido aprovechada para una serie de fines cívicos, humanitarios y de desarrollo, por ejemplo como parte de la infraestructura de las ciudades inteligentes, el manejo del tráfico urbano y los sistemas de control de multitudes, y para la reducción del riesgo de desastres detectando a distancia los riesgos ambientales. La ciudad de Londres ha estado usando la IdC y los sistemas de big data para mejorar los sistemas de transporte público. (Véase la página de Ciudades inteligentes. Estos sistemas manejan demoras inesperadas y averías, informan a los pasajeros directamente de las demoras, crean mapas de rutas comunes mediante datos anonimizados, ofrecen actualizaciones personalizadas a los viajeros, y permiten identificar áreas que mejorar o en donde incrementar la eficiencia. El transporte mediante vehículos autónomos es uno de los ámbitos en donde se espera que la IdC traiga importantes avances.

En la comunidad de Boudry, en Burkina Faso, los smartphones y el GPS están conectados para identificar los linderos de las parcelas de tierra. Crédito de la fotografía: Anne Girardin.

Muchos usos de la IdC están siendo explorados en relación con el cuidado y asistencia de la salud. Por ejemplo, los monitores de glucosa vestibles bajo la forma de parches dérmicos pueden monitorear continua y automáticamente el nivel de glucosa en la sangre de los diabéticos y administrar insulina cuando sea necesario.

Los sistemas de dispositivos equipados con sensores son usados frecuentemente por investigadores, cooperantes y líderes comunitarios para recoger y registrar datos sobre el medio ambiente, por ejemplo la calidad del aire y el suelo, la calidad y los niveles de agua, los niveles de radiación y hasta la migración de los animales.
Los conjuntos de datos de sensores podrían también revelar información nueva e inesperada, que permitirá a la gente contar historias respaldadas por las evidencias que podrían servir al interés público.

Por último, el uso de la IdC, también está siendo explorado en relación con los defensores de los derechos humanos. Los sistemas de IdC equipados con sensores pueden usarse para documentar las violaciones de los derechos humanos y recoger datos acerca de ellas. Un brazalete diseñado por el Natalia Project automáticamente detona una alerta cuando se le retira a la fuerza o el usuario lo activa. El brazalete usa GPS y redes móviles para enviar un mensaje de peligro predefinido, junto con su ubicación y una marca de hora a voluntarios presentes en las cercanías, así como a la sede de Civil Rights Defenders, una ONG sueca.

Sin embargo, junto a estas fascinantes aplicaciones vienen también unas serias preocupaciones. Los dispositivos digitales tienen vulnerabilidades inherentes, y vincular los dispositivos a la Internet y entre sí intensifica las amenazas de seguridad como el acoso, las filtraciones de datos y las violaciones de la privacidad personal. Los sensores de la IdC pueden usarse para monitorear y vigilar a comunidades de minorías vigilando a las organizaciones , lo que podría llevar a violaciones de los derechos civiles. Estas preocupaciones y otras implicaciones de una red inmensa y omnipresente de dispositivos de recolección de datos se exploran en la sección Riesgos.

Inicio

Oportunidades

Investigadores biólogos en Madidi, Bolivia, arman una cámara para fotografiar jaguares usando un sensor que detecta el calor corporal. Crédito de la fotografía: Julie Larsen Maher, Wildlife Conservation Society

La IdC y los sensores pueden tener impactos positivos cuando se les usa para promover la democracia, los derechos humanos y las cuestiones de gobernanza. Lea a continuación para aprender cómo pensar de modo más eficaz y seguro acerca de la IdC y los sensores en su trabajo.

Monitoreo y evaluación

Los sistemas de la IdC pueden facilitar el monitoreo continuo de pequeños detalles intrincados, y transmitir estos datos a sistemas que pueden analizarlos y evaluarlos en tiempo real. Este tipo de monitoreo tiene muchas implicaciones para la eficiencia y la sostenibilidad de los recursos. En Mongolia se han usado sensores de temperatura baratos para monitorear y evaluar un programa de subsidios que ofrecía estufas energéticamente eficientes para calefacción doméstica. Las estufas buscaban reducir la contaminación del aire y el gasto de combustible. La información obtenida de los sensores llevó a la conclusión de que la eficiencia energética efectivamente se había alcanzado aún cuando el consumo de carbón en los hogares examinados se mantuvo constante. Otros ejemplos de monitoreo gracias a sensores incluyen a Riffle (Remote, Independent Field Friendly Logger Electronics), un conjunto de diseños de instrumentos de código abierto que permiten a las comunidades recoger datos y monitorear la calidad de su agua. Los diseños despliegan distintos tipos de sensores para medir parámetros tales como la temperatura, profundidad, turbidez y conductividad del agua. Riffle forma parte del Open Water Project de Public Lab.

Sistemas de seguridad y protección

Cuando se instalan legalmente en hogares privados y centros de trabajo, los sistemas de IdC pueden dar seguridad. Las cerraduras inteligentes, las cámaras de video y los detectores de movimiento pueden usarse para alertar de o prevenir posibles intrusiones, en tanto que los detectores de humo y los termostatos pueden alertar de y reaccionar al fuego, la calidad peligrosa del aire, etc. Los “hogares inteligentes” anuncian estos beneficios de seguridad. Por ejemplo, un videotimbre puede enviar una alerta a su smartphone cuando se detecta movimiento y grabar un video de quién o qué lo detonó para su examen posterior. Las cerraduras inteligentes les permiten abrir y cerrar sus puertas a distancia, o dar acceso a los invitados con un app o keypad. Estas comodidades de seguridad doméstica vienen, claro está, con sus propias preocupaciones. El sistema de seguridad doméstica Ring de Amazon ha estado en los titulares múltiples veces debido a la aparición de historias de hackeo y de vulnerabilidades.

Sistemas de alerta temprana

Cuando se les empareja con la analítica de datos y la inteligencia artificial, los sistemas de IdC pueden ayudar con advertencias tempranas acerca de riesgos ambientales o de salud, por ejemplo acerca de la posibilidad de inundaciones, terremotos o incluso de la propagación de enfermedades infecciosas como el Covid-19. La compañía Kinsa Health ha logrado aprovechar los datos reunidos por sus termómetros conectados a Bluetooth para producir mapas diarios de qué condados de los EE.UU. estaban viendo un incremento en fiebres altas, ofreciendo así indicaciones en tiempo real de dónde podría estar concentrándose la enfermedad. Las redes de sensores, en combinación con la analítica de datos, pueden ser usadas por gobiernos y ecólogos para detectar cambios ambientales que podrían indicar una amenaza emergente — por ejemplo, un peligroso incremento en el nivel del agua o un cambio en la calidad del aire—, información que puede analizarse y compartirse rápidamente para entender mejor, responder a y alertar a otros de la amenaza.

Vehículos autónomos

Al permitir que los vehículos se comuniquen entre sí y con la infraestructura vial —como semáforos, estaciones de carga eléctrica, asistencia vial y hasta autopistas con sensores—, la IdC podría mejorar la seguridad y eficiencia del transporte vial. Los vehículos autónomos tienen un largo camino que recorrer (tanto en lo que respecta a la tecnología y la seguridad, como a los marcos legales necesarios para su funcionamiento apropiado), pero la IdC está haciendo que estos vehículos sean una posibilidad, lo que trae nuevas oportunidades para compartir autos, el transporte urbano y los servicios de entrega.

Inicio

Riesgos

El uso de la IdC y de los sensores puede también crear riesgos para los programas de la sociedad civil. Lea a continuación cómo discernir los posibles riesgos asociados con el uso de estas tecnologías en el trabajo DRG.

Vigilancia de masas y acoso

Los sistemas de IdC generan grandes cantidades de datos, que en ausencia de una protección adecuada fueron usados por gobiernos, entidades comerciales u otros actores para la vigilancia de masas. Los sistemas de IdC que recogen datos de su entorno pueden recoger datos personales acerca de humanos sin su conocimiento o consentimiento, o procesarlos y combinarlos de modo invasivo y no consensual. En conjunción con las capacidades de monitoreo, los sistemas de IA (por ejemplo, el reconocimiento facial y de emociones) y el análisis de big data, los sistemas de IdC presentan oportunidades para la vigilancia de masas y potencialmente para fines represivos que dañan los derechos humanos y civiles. En efecto, los gobiernos autoritarios tienen un historial de usar los dispositivos de IdC y las llamadas ‘ciudades inteligentes’ como métodos de opresión y de acallar el disenso.

Preocupaciones con la privacidad, la protección de datos y la seguridad

La Comisión Federal de Comercio (FTC) de los Estados Unidos (FTC) identificó tres problemas claves que la IdC presenta a la privacidad de los consumidores (2015): la recolección ubicua de datos, el potencial para usos inesperados de los datos de los consumidores, y riesgos de seguridad intensificados. Los sistemas de IdC generan inmensas cantidades de datos y crean grandes conjuntos de ellos. Por otro lado se sabe que las aplicaciones de la IdC, sobre todo las aplicaciones de consumidores, tienen vulnerabilidades de privacidad y seguridad, riesgos que se ven magnificados por la cantidad y la naturaleza potencialmente sensible de los datos involucrados. Información aparentemente inocua, o que fue recolectada sin la plena conciencia de las personas involucradas, puede plantear serias amenazas. Por ejemplo, una visualización de las rutas de ejercicio de los usuarios, publicada por una app de monitoreo de fitness, expuso la ubicación y la dotación de personal de las bases militarse de los EE.UU., así como bases secretas dentro y fuera del país.

Las entidades comerciales podrían usar los datos obtenidos de los sistemas de IdC para influir en el comportamiento de los consumidores, por ejemplo mediante publicidad focalizada. En efecto, los sensores en las tiendas están siendo usados cada vez más para aprovechar los datos sobre los usuarios a partir de su comportamiento de compras dentro de las tiendas.

Para información adicional sobre la privacidad, la protección de datos y los asuntos de seguridad véanse también los recursos de Protección de datos, Big Data e Inteligencia artificial.

Mayor riesgo de ciberataques

Se sabe que el hardware y software de los dispositivos de la IdC son sumamente vulnerables a los ciberataques, y los ciberdelincuentes intentan activamente explotar estas vulnerabilidades de seguridad. Incrementar el número de dispositivos en una red de IdC significa incrementar la superficie para los ciberataques. Dispositivos comunes como impresoras conectadas a Internet, cámaras web, enrutadores de red y equipos televisivos son usados por los ciberdelincuentes con fines maliciosos, como la ejecución de ataques de denegación de servicio distribuidos (DDoS) coordinados contra páginas web, la distribución de malware y la ruptura de la privacidad de particulares. Ha habido numerosos incidentes de hackers que logran acceder a la transmisión de las cámaras y micrófonos de seguridad domésticos, e incluso de los monitores que permiten a los padres ver a sus hijos mientras no se encuentran en casa. Estos incidentes generaron una demanda para que se regule a las entidades que diseñan, fabrican y emplean dispositivos y sistemas comerciales de la IdC.

Asuntos éticos no explorados

El uso cada vez más grande de la automatización trae consigo preguntas y preocupaciones éticas que podrían no haber sido consideradas antes del arribo de la tecnología misma. He aquí unos cuantos ejemplos: ¿los dispositivos inteligentes del hogar reconocerán los comandos de voz dados por personas que hablan distintos lenguajes, dialectos y hasta con diferentes acentos? ¿Será apropiado recoger datos de grabaciones de voz en estos otros dialectos y acentos —de modo plenamente consensual y ético— a fin de mejorar la calidad del dispositivo y su capacidad de servir a más personas?

Los datos obtenidos de los dispositivos de la IdC también están siendo usados cada vez más como evidencia digital en los juzgados o con otros fines judiciales, lo que plantea interrogantes acerca de la ética e incluso la legalidad de dichos usos, así como acerca de su precisión e idoneidad como evidencias.

La dependencia del proveedor, la interoperabilidad insuficiente entre redes y el reto de conseguir el consentimiento informado de los sujetos de datos debe asimismo tenerse en cuenta. Véase más acerca de estos riesgos en los recursos sobre la ID digital y la Protección de datos [¿?: Data Protection].

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones de la IdC y los sensores en su entorno laboral, o si está considerando emplear algunos aspectos de la IdC y las tecnologías afines, como parte de sus programas de DRG:

  1. ¿Los dispositivos conectados a la IdC son herramientas idóneas para el problema que está intentando resolver? ¿Cuáles son los indicadores o factores directrices que determinan si el uso de la IdC o de una tecnología de sensor es una solución idónea y requerida para un problema o reto particular?
  2. ¿Qué datos serán recogidos, analizados, compartidos y almacenados? ¿Quién más tendrá acceso a esta información? ¿Cómo estarán protegidos? ¿Cómo puede asegurarse de recoger el monto mínimo de datos necesarios?
  3. ¿Se está recogiendo algún dato personal o sensible? ¿Cómo obtiene el consentimiento informado en este caso? ¿Hay la posibilidad de que los dispositivos de su red combinen conjuntos de datos y que juntos creen información sensible o personalmente identificable?
  4. ¿Las tecnologías y redes que usa son lo suficientemente interoperables como para que traiga nuevas tecnologías y hasta nuevos proveedores a la red? ¿Están diseñadas con estándares abiertos y con la portabilidad en mente? ¿Hay algún riesgo de quedar atrapado con un proveedor particular de tecnología?
  5. ¿Cómo está abordando los riesgos de vulnerabilidades o fallos en el software? ¿Cómo podría mitigar estos riesgos desde el principio? Por ejemplo, ¿es necesario que estos dispositivos se conecten a la internet? ¿Pueden conectarse más bien a una intranet privada o a una red de internet de pares?

Inicio

Estudios de caso

Instructor en Tanzania, en donde los datos captados por GPS pueden usarse para mapear y asignar títulos de tierras. Crédito de la fotografía Riaz Jahanpour para USAID / Digital Development Communications
La IdC mejorará el proceso de fortificar la harina con nutrientes claves

La IdC mejorará el proceso de fortificar la harina con nutrientes claves

Sanku (Project Healthy Children), una organización que busca poner fin a la malnutrición en todo el mundo, está equipando a molinos de harina pequeños en África con la tecnología de la IdC, para así proporcionar nutritiva harina fortificada a millones de personas. Los datos de la producción diaria son enviados en tiempo real a través del enlace celular a un panel que permite a la organización monitorear el desempeño de los molinos. Los datos recogidos incluyen la harina producida, los nutrientes distribuidos y toda cuestión técnica con la performance de las máquinas. “La IdC nos está permitiendo automatizar íntegramente nuestras operaciones y la forma en que administramos nuestro negocio… Ya no es un problema intentar establecer qué molinos necesitan ser visitados, qué dosificadores requieren mantenimiento, y cuándo se deben entregar los productos para evitar que se agote el inventario”.

El Guardian Project desarrolla apps para los defensores de los derechos humanos

Proof Mode de Guardian Project, es una aplicación de cámaras de código abierto para dispositivos móviles diseñada para activistas, defensores de los derechos humanos y periodistas. Cuando se toma una foto o video usando el dispositivo, la app recoge tantos metadatos como sea posible, como por ejemplo una marca temporal, la identidad del aparato y la ubicación de los distintos sensores presentes en el dispositivo. La app también agrega una firma digital públicamente verificable al archivo de metadatos, todo lo cual finalmente brinda al usuario una evidencia digital segura y verificable.

Haven, otra app de Guardian Project, usa los sensores presentes en un dispositivo móvil como el acelerómetro, la cámara, micrófono, sensor de proximidad y batería (estatus de encendido) para monitorear los cambios en los alrededores de un teléfono. Estos cambios a) se guardan como archivos de imágenes y sonido, b) son registrados en un log de eventos al cual se puede acceder a distancia o en cualquier momento posteriormente, y c) se usan para gatillar una alarma o para enviar notificaciones seguras acerca de intrusiones o actividades sospechosas. Los programadores de la app explican que Haven está diseñada para periodistas, defensores de los derechos humanos y para personas en riesgo de desaparición forzada.

Sensores de temperatura para medir comportamientos de uso de estufas en Ulán Bator

Sensores de temperatura para medir comportamientos de uso de estufas en Ulán Bator

“…[E]n una evaluación de impacto del [programa de subsidios]… que buscaba reducir la contaminación del aire y disminuir el gasto en combustible mediante la distribución subsidiada de estufas de calefacción más eficientes en su uso del combustible… [p]ara recoger medidas precisas y no sesgadas del comportamiento de uso de las estufas, se colocaron pequeños sensores de temperatura (monitores del uso de la estufa o SUM) en un subconjunto de los hogares sondeados … Los datos de los SUM sobre la temperatura ambiente también indicaron que los hogares con estufas [del programa de subsidios] eran mantenidos más calientes que los que tenían las estufas tradicionales, pero el combustible usado era en promedio el mismo. Esto sugiere que los hogares estaban utilizando la eficiencia con el combustible para elevar la temperatura de la casa, a sabiendas o no. Al final, los sensores de temperatura baratos fueron cruciales para recoger datos precisos de resultados inesperados y para explicarlos”.

Usando sensores de IdC para el cuidado de la salud

Usando sensores de IdC para el cuidado de la salud

Los sensores de IdC, al igual que los monitores cardíacos o los sleep trackers vestibles, pueden ayudar a los profesionales del cuidado de la salud en el tratamiento de los pacientes. Los monitores usan sistemas conectados de información para analizar datos de salud relevantes para enfermedades como Parkinson, Alzheimer y dolencias cardíacas, ayudando a los médicos a entender patrones y proporcionar así un mejor suministro del servicio del cuidado de la salud. Al brindar un cuidado preventivo, los sistemas del cuidado de salud pueden reducir los costos y ampliar el servicio a una gama más amplia de pacientes.

Sensores de movimiento para monitorear la funcionalidad de bombas de mano en Ruanda, estudio de caso 3

Sensores de movimiento para monitorear la funcionalidad de bombas de mano en Ruanda,  estudio de caso 3
“En el proyecto piloto destacado en Ruanda, más de 200 sensores fueron instalados en bombas de agua, transmitiéndose inalámbricamente los datos de cada sensor a través de la red celular a un panel para el equipo de operaciones y mantenimiento. El panel muestra el estatus en tiempo real de cada bomba provista de un sensor. Esto permite que los equipos de operaciones y mantenimiento empleen un modelo “ambulancia”, despachando equipos sólo a los puntos de agua marcados para reparaciones o chequeos”.

Inicio

Referencias

A continuación encontrará los trabajos citados en este recurso.

Recursos adicionales

Inicio

Categories

Robots y Drones

¿Qué son los robots y drones?

La palabra “robot” puede traer a la mente imágenes de androides y ciborgs: un universo distópico de máquinas que viven entre los seres humanos. En realidad el campo de la robótica es vasto y diverso: los robots simplemente son dispositivos programables que pueden ejecutar taras con cierto grado de autonomía. Equipados con sensores, los robots pueden tomar decisiones basadas en su entorno físico. En muchas áreas de aplicación están siendo propulsados cada vez más por la inteligencia artificial.

Los drones, por su parte, usualmente son vehículos ligeros provistos de una serie de sensores, un sistema GPS, una fuente de poder, antena, controladores y componentes que les permiten volar. Al igual que otros robots, los drones operan con distintos grados de autonomía que van de los que son completamente autónomos a los que un humano pilotea desde el suelo.

Granja en la India noroccidental, en donde los drones ayudan a los científicos a medir la parcelas de investigación con mayor eficiencia. Crédito de la fotografía: Daljit Singh.

Los robots y drones son utilizados para muchos fines: en entornos industriales, educativos, de hospitales, medicina y cuidado de la salud, ventas al por menor, búsqueda y rescate, socorro y recuperación de desastres, la automatización del hogar, aplicaciones militares, agricultura, asistencia personal, vigilancia y exploración, entre otros. Podemos ver a robots y drones como una combinación de distintas tecnologías (entre ellas la automatización, la IdC, la big data y la inteligencia artificial) con ingeniería para efectuar acciones con limitada supervisión humana.

¿Cómo funcionan los robots y drones?

Los robots están repletos de sensores que les permiten “sentir” y navegar por su entorno, de modo similar a un humano que puede ver, escuchar, tocar y oler. Algunos robots, como las macetas robóticas, son estacionarios, en tanto que otros pueden volar (como los drones), sobrevolar, caminar, correr, gatear, saltar, reptar, nadar o ejecutar una serie de movimientos.

Los robots son autónomos en diverso grado. Algunos se encuentran controlados íntegramente por humanos y no toman decisiones por cuenta propia; por ejemplo, algunos robots industriales solamente operan dentro de los límites estrictos del entorno fabril ejecutando movimientos simples y repetitivos controlados por humanos.
Los robots semiautónomos operan en cierta medida sin control humano y en algunos escenarios y condiciones pueden tomar sus propias decisiones, por ejemplo un robot aspiradora de limpieza.

Los robots plenamente autónomos son capaces de operar y tomar decisiones sin control o intervención humana, por ejemplo los vehículos autónomos, que son uno de los muchos tipos de vehículos robóticos sin conductor. Algunos robots son incluso capaces de aprender por cuenta propia corrigiendo sus respuestas, comportamientos o acciones basados en datos y/o las respuestas de sus usuarios: por ejemplo, los robots industriales que usan inteligencia artificial y comparten datos entre sí para mejorar su desempeño, esencialmente reprogramándose a sí mismos.

Estudiante en un laboratorio tecnológico en Indonesia. Los robots y drones son relevantes en los entornos industriales, educación, cuidado de la salud, venta al menudeo y operaciones humanitarias, entre otros. Crédito de la fotografía: USAID Indonesia.

Por último, algunos robots son diseñados para que reconozcan las principales emociones humanas a partir de las expresiones faciales de sus usuarios, y a que cambien sus acciones o comportamientos en respuesta. Por supuesto que este tipo de inteligencia emocional del robot sigue siendo experimental (no siempre se puede garantizar su precisión) y plantea importantes cuestiones éticas (véase la sección Riesgos).

Los drones son robots equipados con motores y sensores que les permiten volar, navegar y reunir datos. Pueden volar autónomamente o bajo el control de un humano que los opera desde el suelo, usualmente con un sistema de comunicación radial. Originalmente usados por los militares, en los últimos años los drones se abrieron camino hacia aplicaciones civiles. Entre los términos técnicos para los drones tenemos UAV (unmanned aerial vehicle, vehículos aéreos no tripulados), UAS (unmanned aircraft systems, sistemas aéreos no tripulados), vehículos/sistemas de aeronaves no tripuladas, RPAV (remotely piloted aerial vehicle) y RPAS (remotely piloted aircraft system, aeronaves no pilotadas)

Inicio

¿De qué modo los robots y drones son relevantes en el espacio cívico y para la democracia?

Los drones y robots tienen un amplia gama de aplicaciones en el espacio cívico. En la respuesta y preparación para los desastres, los robots de búsqueda y rescate y los drones pueden usarse para ubicar a sobrevivientes atrapados bajo los escombros de terremotos o inundaciones, y brindar datos en tiempo real así como outputs sensoriales a los operadores de socorro. Este breve video del Centre for Robot-Assisted Search and Rescue da cuenta del uso de robots en distintas situaciones de desastre que tuvieron lugar por todo el mundo entre 2001 y 2017.

Los drones también han sido usados por el Programa de las Naciones Unidas para el Desarrollo (PNUD) y sus asociados locales para mapear Mauricio, monitorear la recuperación posterior a la crisis de Mali, y ayudar a las comunidades isleñas de las Maldivas a prepararse para, y responder a, los desastres relacionados con el alza del nivel del mar y las tormentas costeras. Durante el estallido del Covid-19, varias ciudades usaron drones para rociar desinfectante en espacios públicos y medir la temperatura corporal de las personas. Este video de FSD ofrece más ejemplos de drones en acciones humanitarias.

Trabajadores humanitarios observan un dron volando sobre una zona inundada en Kenia. Crédito de la fotografía: Faith Sashah/USAID.

Los robots y drones pueden ser beneficiosos para ciertas áreas de la economía y la sociedad. Los primeros se pueden usar para efectuar otras tareas demasiado peligrosas para los humanos, como el manejo de materiales biopeligrosos, la detección de minas terrestres y explosivos y su marcado para retirarlos o detonarlos. También ayudan con tareas que superan las capacidades humanas; por ejemplo, pequeños robots pueden recorrer espacios, bolsillos y grietas en minas subterráneas demasiado pequeños para los humanos. En el sector agrícola los drones se usan para rociar pesticidas, detectar la altura de los cultivos y seguir los cambios en los cultivos en los campos agrícolas. También los usan periodistas e investigadores. Por ejemplo, en 2018 la BBC filmó un video en dron que descubrió por vez primera los campos de detención en la frontera entre México y los EE.UU., en donde los hijos de los migrantes estaban siendo retenidos después de haber sido separados de sus familias.

Los robots tienen muchos usos que están apareciendo en el cuidado de la salud y la terapia. Pueden, por ejemplo, ayudar con tareas diarias como la preparación de alimentos, o recordatorios para tomar medicina. También pueden mejorar los miembros prostéticos: este video del Guardian explora distintos tipos de prótesis robóticas hechas posibles por la “tecnología biónica”. Los robots pueden servir como asistentes en procedimientos y cirugías médicas y también comoenferemos. Algunos robots pueden incluso semejar formas humanas o animales y usarse para brindar apoyo emocional, ayuda o terapia. PARO, por ejemplo, un robot de terapia que se parece a una foca arpa, ha sido usado en el cuidado de pacientes ancianos con demencia. Dado que estas son tecnologías novedosas no es mucho lo que se sabe de su efecto sobre los pacientes; la mayoría de las investigaciones son teóricas y no dan cuenta de la perspectiva de los pacientes. Con todo, el uso de robots en el cuidado de salud y asistencia son crecientes campos de investigación e inversión. Para mayor información véase este documento de posición sobre “Assistive technology and people (Tecnología de apoyo y la gente)”.

El uso de drones en la guerra (vehículos aéreos no pilotados) plantea uno serios problemas de derechos humanos: a pesar de su súper precisión, los drones pueden accidentalmente herir y matar civiles y personas además de sus blancos. Los drones identifican sus blancos a partir de metadatos provenientes de dispositivos electrónicos (como los datos de ubicación de un celular), lo que podría provocar la muerte de personas inocentes. Es importante tener en cuenta estos riesgos con respecto al uso de los drones no militares, puesto que éstos dependen de metadatos y pueden también identificar a las personas equivocadas. Para mayor información acerca del uso militar véase la sección Riesgos.

En Moldova, la industria del vino usa drones y datos GIS en los procesos de inspección de los viñedos. Crédito de la fotografía: Colby Gottert for USAID / Digital Development Communications.

Las distintas aplicaciones de drones y robots tienen cada una sus propias implicaciones para la sociedad y la democracia. Ambos en esencia reducen la participación humana directa en distintos procesos, lo cual podría ser un beneficio o un riesgo dependiendo de la tarea y del diseño de la operación.

Inicio

Oportunidades

Robots y drones pueden tener impactos positivos cuando se les usa para promover la gobernanza democrática y para proteger, respetar y cumplir con los derechos humanos. Lea a continuación cómo reflexionar acerca de estas tecnologías en su trabajo de modo más eficaz y seguro.

Llevar a cabo tareas peligrosas o degradantes

Robots y drones pueden reemplazar a los humanos en tareas peligrosas (por ejemplo, las que involucran la posibilidad de una exposición accidental a la radiación nuclear, o la detección de minas terrestres en el desierto); tareas que podían requerir de un duro trabajo físico en lugares como canteras o minas; y labores que conllevan el riesgo de lesiones ocupacionales. Tiramisu, un proyecto humanitario de desminado en Europa, emplea una serie de vehículos robóticos para detectar minas terrestres y explosivos. Los robots pueden también efectuar trabajos perjudiciales para la salud y la dignidad humanas. Por ejemplo, algunos estados de la India están reemplazando las actividades de escarbado y limpieza manual de las alcantarillas con el uso de robots. Éstos podrían incluso efectuar algunas labores que pondrían a los humanos en peligro de contraer el coronavirus. Durante el brote de Covid-19, un café en Daejeon, Corea del Sur utilizó trabajadores robots para que prepararan y sirvieran café a los clientes, limitando así la interacción entre humanos. Los drones, a su vez, están siendo usados para entregar provisiones esenciales en entornos del cuidado de salud y a personas en cuarentena, para de este modo reducir la exposición humana al Covid-19.

Creciente eficiencia

Los robots y drones pueden ayudar a mejorar la velocidad, eficiencia y cobertura del suministro de servicios y ayudar a reducir los errores humanos, ahorrar tiempo y minimizar costos. En Filipinas, los drones tomaron imágenes para informar la reconstrucción y reedificación luego del tifón Haiyan. En Nepal, se les usó para mapear terrenos vulnerables a los desprendimientos de tierra luego de dos terremotos ocurridos en 2015.

Realizar tareas que superan las capacidades físicas de los humanos

Las tareas que requieren de una fuerza física, resistencia, velocidad, precisión, etc., que caen más allá de la capacidad humana, podrían realizarse mediante sistemas robóticos automatizados, por ejemplo moviendo objetos extremadamente pesados u observando objetos diminutos con precisión, verbigracia en algunos procedimientos quirúrgicos.

Inicio

Riesgos

El uso de robots y drones también puede crear riesgos en los programas de la sociedad civil. Lea a continuación cómo distinguir los posibles riesgos asociados con el uso de estas tecnologías en el trabajo DRG.

Problemas laborales (“desempleo tecnológico”)

Cuando se usan robots, IA y otras tecnologías automatizadas para reemplazar el trabajo humano monótono, repetitivo o de baja calificación, la pérdida de empleos resultante podría provocar un desempleo estructural al que se conoce como “desempleo tecnológico”. El desempleo estructural afecta de modo desproporcionado a las mujeres, las clases económicas bajas y a otros miembros vulnerables de la sociedad, salvo que se les vuelva a calificar y que se les brinde protecciones adecuadas. La automatización también requiere de mano de obra calificada que pueda operar, supervisar o mantener sistemas automatizados, eventualmente creando así empleo para una parte de la población. El efecto global que robots y drones tienen sobre el empleo aún no está claro, pero el impacto inmediato de esta transformación del trabajo podría ser dañina para la gente y las comunidades que no cuentan con redes de seguridad social u oportunidades de encontrar otro empleo.

Vigilancia masiva y acoso

Los drones pueden ser unas poderosas herramientas de vigilancia y acoso. Cuando se las combina con otras tecnologías como el reconocimiento facial, las imágenes tomadas por drones en protestas públicas podrían usarse para identificar a manifestantes individuales. La recolección y almacenaje no regulados de imágenes tomadas por drones en espacios civiles podría facilitar la vigilancia masiva. Los paparazzi y acosadores pueden usar discretas cámaras pequeñas del tamaño de un dron para vigilar sigilosamente a sus blancos. En los países que han prohibido por completo el uso civil de los drones, algunos han dado como razón el temor al terrorismo, los accidentes aéreos o alguna otra cuestión de seguridad.

Insuficiente protección legal

Los drones han comenzado a ser regulados en muchos países para prevenir accidentes, violaciones de la privacidad personal y la propiedad privada, voyerismo y otras actividades ilegales. Los requisitos reguladores incluyen procedimientos de seguridad y detalles tales como la altura a la que los drones pueden volar, su peso, funciones, distancia y ubicación con respecto a otros vehículos aéreos, entre otras cosas. Las leyes y regulaciones referidas a los drones están en evolución en la mayor parte del mundo, y en general están siendo incorporados a los marcos reguladores de la aviación ya existentes, pero aún quedan muchas zonas grises y problemas de cumplimiento.

Preocupaciones éticas no exploradas

Los comportamientos autónomos y las capacidades de toma de decisiones de los robots plantean muchas consideraciones éticas, en especial en las áreas de la responsabilidad (legal) y la privacidad. Por ejemplo:

  • ¿Quién debería determinar las tareas y responsabilidades que un robot puede llevar a cabo con seguridad, esto es sin dañar a humanos o restringir sus derechos, y cómo establecer esto?
  • ¿Debiera permitirse a los robots que interpreten las emociones humanas? Si están interpretando las emociones de los empleados humanos que trabajan a su lado, ¿se les debe permitir usar o guardar esta información?
  • ¿Cuál es el margen de error permisible para un robot que ayuda en una cirugía médica? ¿Quién es legalmente responsable por esta operación?
  • Si las leyes y regulaciones existentes no son aplicables o son indeterminadas, ¿cómo entonces regulamos los comportamientos y responsabilidades asignadas a los robots?
  • ¿Necesitamos leyes exclusivas para los robots, esto es leyes que rijan específicamente su comportamiento y asignen responsabilidad o la obligación de resarcimiento a quienes los diseñaron, fabrican y usan?

Privacidad, protección de los datos y cuestiones de seguridad

“La robótica combina, por vez primera, la promiscuidad de los datos con la capacidad para causar daños físicos; los sistemas robóticos efectúan tareas en modos que no pueden ser anticipados, y los robots borran cada vez más la línea que separa a la persona del instrumento”.

Robotics and the lessons of cyberlaw

Robots y drones generalmente recogen datos; cuando estos son personales (por ejemplo, datos de salud, el desempeño laboral de los empleados, la ubicación e interacciones de personas, etc.) hay una significativa preocupación con respecto al mal uso de los datos o su filtración. Los drones son particularmente temidos por su capacidad para invadir la privacidad personal, puesto que pueden examinar espacios a los cuales los intrusos humanos no han podido acceder. Se les puede usar para espiar porque son relativamente baratos y relativamente silenciosos. Este tipo de vigilancia no detectada puede ser llevada a cabo por civiles o por el gobierno y las fuerzas policiales. Aún más, al igual que otros dispositivos digitales, los robots y drones son vulnerables al hackeo y los ciberataques, filtraciones de datos y simples fallas de diseño y mal funcionamiento.

Creciente uso militar de armas autónomas

Las armas completamente autónomas, a las cuales también se conoce como “robots asesinos”, pueden seleccionar y matar a blancos humanos sin que necesiten de control o intervención humana. Los drones armados operados a distancia por humanos fueron usados en los ataques efectuados con estas armas por los Estados Unidos contra sospechosos de terrorismo que vivían en otros países entre 2009 y 2016, tal como lo revelaron las investigaciones de The Intercept y The Bureau of Investigative Journalism. Estados Unidos cuenta con el mayor número de drones militares del mundo, pero otras fuerzas armadas también los están adquiriendo. El creciente uso de drones en la guerra debiera ser una alarma para los defensores de los derechos humanos de todo el mundo.

Human Rights Watch, que dirige la Campaign to Stop Killer Robots (Campaña para detener a los robots asesinos) anota en su página web: “Destacados expertos en IA, expertos en robótica, científicos y trabajadores en tecnología Google y otras compañías vienen exigiendo que se regule. Advierten que los algoritmos son alimentados con datos que inevitablemente reflejan diversos sesgos sociales, los cuales, de ser aplicados en armas, podrían hacer que se ponga la mira de modo desproporcionado en personas con ciertos perfiles. Los robots asesinos serían vulnerables al hackeo y a ataques en los cuales unas modificaciones menores al input de datos podrían ‘engañarles en formas en que ningún humano jamás lo sería’”.

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que robots y drones tienen en su entorno laboral, o si está considerando usar estas tecnologías como parte de su programación DRG: 

  1. ¿Un robot o un dron es el mejor método para el problema que está intentando resolver? ¿Cómo lo sabe?
  2. ¿Hay suficiente supervisión humana de los robots, y tienen los humanos suficiente capacitación y comprensión de su funcionamiento? ¿Cómo se asegurará de que los humanos estén supervisando toda decisión importante tomada usando la robótica? ¿Quién es legalmente responsable en caso de un accidente?
  3. ¿Usted y todos los actores que operan la tecnología entienden plenamente cómo es que el robot funciona, cómo está aprendiendo y en qué basa sus decisiones, etc.? ¿Hay alguna “caja negra” o elementos desconocidos? ¿Hay algún potencial de sesgos u otro mal funcionamiento?
  4. ¿Qué datos estará el robot recogiendo, procesando y almacenando? ¿Se cuenta con salvaguardas y medidas de seguridad apropiadas, en particular si se están recogiendo datos personales?
  5. ¿Cuenta con suficientes medidas de seguridad con respecto a la privacidad personal, la ciberseguridad y también la seguridad física de operadores y empleados en las cercanías?
  6. ¿Cuáles son los efectos de largo plazo de usar robots en el medio ambiente o comunidad circundante, por ejemplo sobre los empleos, salarios, bienestar social, etc.? ¿Cómo mitigará todo efecto negativo? ¿Qué medidas son necesarias para asegurarse de que el uso de esta tecnología no agrave o refuerce la desigualdad?
  7. ¿Qué siente la gente de los robots con los que trabaja o cuya ayuda recibe? ¿Tiene razón alguna para temer algún efecto psicológico negativo debido a esta relación, en el corto o en el largo plazo?
  8. ¿Cómo acatará el Reglamento General de Protección de Datos (RGPD) u otras regulaciones aplicables, por ejemplo las leyes acerca del acoso y el voyerismo?
  9. La regulación acerca de los drones está evolucionando rápidamente en todo el mundo, de modo tal que es importante que esté al día con los últimos desarrollos, para así estar seguro de que esté operando dentro de las fronteras de la legalidad. ¿Conoce las políticas y regulaciones locales, las de aviación inclusive, aplicables a los drones en el territorio en donde habrá de operar?

Inicio

Estudios de caso

Robot terapéutico PARO en entornos de cuidado de la salud

PARO (una foca arpa robot) fue diseñada como mascota de terapia para gente mayor con demencia. Según una reseña de la bibliografía académica acerca de PARO, los beneficios que tiene el uso del robot en estos entornos incluye la “reducción de las emociones y síntomas conductuales negativos, mejorando la interacción social y promoviendo estados de ánimo y una experiencias de la calidad del cuidado positivos”.

Drones en aplicaciones humanitarias y ambientales, la Fundación Suiza de Desminado (FSD). La página web, hoy extinta pero visible en Archive.org, publicó varios estudios de caso acerca del uso de los drones. En Estudios de caso No. 12, los drones se usan en los servicios contra incendios y de rescate del Reino Unido. “El objetivo primario era mejorar la seguridad del personal… En cierto momento durante la prueba, un dron acompañó a varios bomberos dentro de un edificio y logró detectar que éstos se hallaban trabajando en un muro sin soporte, lo que podría haber tenido consecuencias desastrosas. El operador del dron informó al equipo y tomaron medidas para garantizar su seguridad”.

Suministro de sangre mediante drones en Ruanda

Suministro de sangre mediante drones en Ruanda

El gobierno de Ruanda usó drones con la ayuda de Zipline para entregar sangre a los servicios de salud de modo oportuno. El programa se inició en 2016 y ha provocado una disminución en la expiración de la sangre y en el tiempo de entrega, medidas vitales cuando las vidas están en juego. Los drones pueden efectuar hasta 500 entregas por día y llegar a áreas remotas que de otro modo podrían resultar inaccesibles, dadas las condiciones climáticas y de tráfico.

Los drones ayudan a combatir las enfermedades transmitidas por vía aérea, como el zika en el Brasil

Los drones ayudan acombatir las enfermedades transmitidas por vía aérea como el zika en el Brasil

El Organismo Internacional de Energía Atómica de la ONU, WeRobotics y la Organización de las Naciones Unidas para la Alimentación y la Agricultura están usando robots para combatir las enfermedades transmitidas por mosquitos. Su mecanismo basado en los drones aplica la técnica del insecto estéril(SIT), una forma de control de la natalidad en insectos que usa radiación para esterilizar a los mosquitos machos, los cuales son entonces liberados para que se apareen con las hembras silvestres. Como estas no tienen prole, la población de insectos cae con el tiempo.

Los drones y robots ayudan a minimizar la exposición humana al Covid-19

Los robots están siendo usados para la entrega de provisiones esenciales en entornos del cuidado de salud, así como a personas en cuarentena para reducir la exposición humana al Covid-19. La compañía danesa UVD Robots envió robots a hospitales chinos para desinfectar habitaciones, los que operarán en todas las provincias chinas una vez que hayan sido completamente desplegados. Estos robots emiten una luz ultravioleta por toda una zona para matar virus y bacterias sin exponer al personal humano a una infección.

(Amazon pone a trabajar robots en una fábrica completamente automatizada, 2022)

Amazon puts robots to work in fully automated factory, 2022 (Amazon pone a trabajar robots en una fábrica completamente automatizada, 2022)

Los robots son usados cada vez más por las compañías en los almacenes para que ayuden con los pedidos y las necesidades de empaquetamiento, asumiendo frecuentemente tareas tediosas. Amazon hace tiempo está asociada con el uso pionero de sistemas automatizados en los almacenes y las entregas, y en 2022 introdujo el primer robot de almacén completamente automatizado. El sistema comprende a dos robots, Proteus y Cardinal, un sistema de pisos y un brazo robótico que ayuda a levantar paquetes pesados, a escanearlos y colocarlos en los estantes, reduciendo así la necesidad de que los trabajadores realicen actividades potencialmente dañinas. La meta, señala la compañía, es que el uso de los robots en el entorno de los almacenes finalmente permita al personal concentrarse en tareas más gratificantes.

Inicio

Referencias

A continuación aparecen los trabajos citados en este recurso.

Recursos adicionales

Inicio

Categories

Ciudades inteligentes

¿Qué son las ciudades inteligentes?

Las ciudades inteligentes pueden tomar muchas formas, pero en general aprovechan las tecnologías digitales como la inteligencia artificial (IA) y la Internet de las Cosas (IdC) para mejorar la vida urbana. Las tecnologías y la recolección de datos que sostienen a estas ciudades tienen el potencial para automatizar y mejorar el suministro de servicios, fortalecer la preparación para los desastres, impulsar la conectividad y mejorar la participación ciudadana. Pero si las ciudades inteligentes se implementan sin transparencia y respeto por el imperio de la ley, corren el riesgo de erosionar las buenas normas de gobernanza, minar la privacidad y extinguir la libre expresión.

¿Cómo funcionan las ciudades inteligentes?

La luz solar ilumina un mercado al anochecer en Msimba, Tanzania. Las ciudades inteligentes integran la tecnología con la infraestructura ya existente para recoger datos y optimizar el uso de los recursos. Crédito de la fotografía: Jake Lyell.
La luz solar ilumina un mercado al anochecer en Msimba, Tanzania. Las ciudades inteligentes integran la tecnología con la infraestructura ya existente para recoger datos y optimizar el uso de los recursos. Crédito de la fotografía: Jake Lyell.

Las ciudades inteligentes integran la tecnología con la infraestructura nueva y la ya existente —como carreteras, aeropuertos, edificios municipales y a veces hasta residencias privadas— para optimizar la asignación de recursos, evaluar las necesidades de mantenimiento y monitorear la seguridad ciudadana. El término “ciudad inteligente” no se refiere a una única tecnología, sino más bien a múltiples que operan juntas para mejorar la habitabilidad de una zona urbana. No hay una lista oficial de las tecnologías que una ciudad necesita para implementar lo que se considera “inteligente”. Pero una de estas ciudades sí requiere de planificación urbana, lo que incluye una estrategia de crecimiento administrada por el gobierno local, con una contribución significativa del sector privado.

Los datos constituyen el meollo de la ciudad inteligente

Las ciudades inteligentes por lo general dependen de un procesamiento de datos en tiempo real y de herramientas de visualización que informen la toma de decisiones. Esto usualmente quiere decir recoger y analizar datos tomados por sensores inteligentes instalados por toda la ciudad y conectados a través de la Internet de las Cosas para abordar problemas como el tráfico vehicular, la contaminación del aire, el manejo de desechos y la seguridad física.

La recolección de datos en las ciudades inteligentes también brinda un mecanismo de retroalimentación con que fortalecer la relación entre la ciudadanía y el gobierno local cuando le acompañan medidas de transparencia, como hacer pública la información referida a los presupuestos oficiales y la asignación de recursos. Sin embargo, el mal uso dado a los datos personales sensibles podría alienar a los ciudadanos y reducir la confianza. Una estrategia de manejo de datos detallada y que respete los derechos, podría ayudar a asegurar que los ciudadanos entiendan (y consientan a) cómo se recogen sus datos, se les procesa y guarda, y cómo se les usará en beneficio de la comunidad.

Toda ciudad inteligente es diferente

Las ciudades son extremadamente diversas y la implementación de las ciudades inteligentes variará dependiendo de la ubicación, las prioridades, los recursos y las capacidades. Algunas de ellas se construyen superponiendo las TIC sobre la infraestructura ya existente, como en Nairobi, en tanto que otras son construidas “a partir de cero”, como Konza, el “Silicon Valley” de Kenia. Además del desarrollo tecnológico, otros elementos no digitales de las ciudades inteligentes son las mejoras en las viviendas, una mejor capacidad de caminar, la creación de nuevos parques, la preservación de la vida silvestre, etc. En última instancia, el énfasis en una mejor gobernanza y sostenibilidad puede generar mejores resultados para los ciudadanos que un enfoque explícito en la tecnología, la digitalización y el crecimiento.

Las ciudades inteligentes en los países en vías de desarrollo enfrentan singulares retos legales, reguladores y socioeconómicos.

Ejes impulsores del desarrollo de una ciudad inteligente en los países en vías de desarrollo

  • Capacidad de financiamiento del gobierno
  • Entorno regulador en que los ciudadanos e inversionistas confían
  • Disponibilidad de tecnología e infraestructura
  • Capital humano
  • Estabilidad en el desarrollo económico
  • Compromiso y participación ciudadanos activos
  • Transferencia de conocimientos y participación del sector privado
  • Un ecosistema que promueve la innovación y el aprendizaje

Barreras para el desarrollo de una ciudad inteligente en los países en vías de desarrollo

  • Limitaciones presupuestarias y cuestiones de financiamiento
  • Falta de inversión en infraestructura básica
  • Falta de disponibilidad de infraestructura relacionada con la tecnología
  • Autoridad fragmentada
  • Falta de marcos de gobernanza y salvaguardas reguladoras
  • Falta de capital humano calificado
  • Problemas medioambientales
  • Falta de participación ciudadana
  • Analfabetismo tecnológico y déficit de conocimientos

Niños jugando en la plaza Limonade, Haití. Los proyectos de ciudad inteligente pueden mejorar la calidad de vida de sus ciudadanos. Crédito de la fotografía: Kendra Helmer/USAID.
Children playing at Limonade plaza, Haiti. Smart city projects can improve the quality of life for citizens. Photo credit: Kendra Helmer/USAID.

El desarrollo de una ciudad inteligente que realmente beneficie a los ciudadanos requiere de una cuidadosa planificación, lo que usualmente toma varios años antes de que la infraestructura de la ciudad pueda ser actualizada. Su implementación debiera darse gradualmente a medida que la voluntad política, la demanda cívica y los intereses del sector privado van convergiendo. Los proyectos de ciudades inteligentes solamente pueden ser exitosos cuando la ciudad ha desarrollado una infraestructura básica y levantado protecciones legales para asegurar que la privacidad de los ciudadanos se respete y salvaguarde. La infraestructura necesaria para las ciudades inteligentes es costosa y necesita un mantenimiento de rutina y en marcha, y su revisión por parte de profesionales calificados. Muchos proyectos planeados de ciudades inteligentes quedaron consignados a los cementerios de los sensores olvidados debido a la falta de un mantenimiento adecuado, o porque los datos recogidos no fueron finalmente valiosos para el gobierno y los ciudadanos.El desarrollo de una ciudad inteligente que realmente beneficie a los ciudadanos requiere de una cuidadosa planificación, lo que usualmente toma varios años antes de que la infraestructura de la ciudad pueda ser actualizada. Su implementación debiera darse gradualmente a medida que la voluntad política, la demanda cívica y los intereses del sector privado van convergiendo. Los proyectos de ciudades inteligentes solamente pueden ser exitosos cuando la ciudad ha desarrollado una infraestructura básica y levantado protecciones legales para asegurar que la privacidad de los ciudadanos se respete y salvaguarde. La infraestructura necesaria para las ciudades inteligentes es costosa y necesita un mantenimiento de rutina y en marcha, y su revisión por parte de profesionales calificados. Muchos proyectos planeados de ciudades inteligentes quedaron consignados a los cementerios de los sensores olvidados debido a la falta de un mantenimiento adecuado, o porque los datos recogidos no fueron finalmente valiosos para el gobierno y los ciudadanos.

Elementos comunes de una ciudad inteligente

A continuación aparece un resumen de las tecnologías y prácticas comunes a las ciudades inteligentes, pero esta lista en modo alguno es exhaustiva o universal.

Wi-Fi abierto: una conectividad asequible y confiable a internet es esencial para una ciudad inteligente. Algunas de ellas brindan acceso gratuito a internet de alta velocidad mediante una infraestructura inalámbrica que abarca toda la ciudad. El Wi-Fi gratuito puede facilitar la recolección de datos, apoyar a los servicios de emergencia y alentar a los vecinos a usar los espacios públicos.

Internet de las cosas (IdC): la internet de las cosas es una red en expansión de dispositivos físicos conectados mediante la internet. Desde vehículos a refrigeradores o sistemas de calefacción, estos dispositivos se comunican con los usuarios, programadores, aplicaciones y otros más recolectando, intercambiando y procesando datos. Por ejemplo, los datos recogidos en un medidor de agua inteligente pueden dar forma a mejores respuestas a problemas como las fugas de agua o su desperdicio. La IdC se ve facilitada en gran medida por el surgimiento de los teléfonos inteligentes, que permiten a la gente conectarse fácilmente entre sí y con otros dispositivos.

5G: los servicios de las ciudades inteligentes necesitan internet de alta velocidad y gran ancho de banda para manejar la cantidad de datos generados por la IdC y procesarlos en tiempo real. La creciente conectividad y capacidad de procesamiento de la infraestructura de internet de 5G facilita muchos de los procesos relacionados con internet, necesarios para las ciudades inteligentes.

Redes eléctricas inteligentes: éstas son redes de energía que emplean sensores para recolectar datos en tiempo real acerca de su uso energético y los requisitos de la infraestructura y de los ciudadanos. Además de controlar los servicios públicos, las redes eléctricas inteligentes monitorean la electricidad, distribuyen la banda ancha para mejorar la conectividad y controlan procesos como el tráfico. Estas redes dependen de una serie de operadores de electricidad e involucran a una amplia red de partes, entre ellas vendedores, proveedores, contratistas, operadores de generación distribuida y consumidores.

Sistema inteligente de transporte (SIT): con los sistemas inteligentes de transporte, diversos mecanismos de transporte pueden ser coordinados para reducir el uso de energía, disminuir la congestión del tráfico y disminuir el tiempo de viaje. Los SIT se concentran en la “entrega en el último kilómetro” o en optimizar el proceso de entrega. Los vehículos autónomos suelen estar asociados con ciudades inteligentes, pero los SIT van más allá de vehículos individuales.

Vigilancia: al igual que los objetos conectados, los datos acerca de los residentes pueden ser retransmitidos, juntados y analizados. En algunos casos, las cámaras existentes de CCTV pueden ser unidas a un avanzado software de video-analítica y conectados con la IdC para manejar el tráfico y la seguridad pública. Las soluciones con infraestructura de videovigilancia fija dan cuenta de la inmensa mayoría de la vigilancia en las ciudades inteligentes del mundo, pero las soluciones de vigilancia móvil también vienen creciendo rápidamente. La expansión de la vigilancia a la identificación personal es un tema fuertemente debatido y que tiene ramificaciones significativas para la sociedad civil y los actores de DRG.

ID digital y servicios de entrega: los servicios de identificación digital pueden vincular a los ciudadanos con su ciudad al facilitar la apertura de una cuenta bancaria o el acceso a los servicios de salud. La ID digital centraliza toda la información e historia de transacciones, lo cual es conveniente para los ciudadanos pero también introduce algunas preocupaciones de seguridad. Técnicas tales como la divulgación mínima (depender de la menor cantidad de datos que sea posible) y tecnologías descentralizadas como la identidad autosoberana (SSI) podrían ayudar a separar la identidad, la transacción y el dispositivo.

e-gobierno: el gobierno electrónico —el uso de la tecnología para proporcionar servicios del gobierno al público— busca mejorar el suministro de servicios, mejorar el compromiso ciudadano y construir la confianza. Hacer que más información, como los presupuestos gubernamentales, sea pública y esté a disposición de los ciudadanos es un elemento primario del e-gobierno. El servicio con teléfonos inteligentes es otra estrategia, puesto que la tecnología móvil combinada con una plataforma de e-gobierno puede ofrecer a la ciudadanía un acceso remoto a los servicios municipales.

Director de tecnología: algunas ciudades inteligentes tienen un director de tecnología (CTO) o director de sistemas de información (DSI), que lidera los esfuerzos de la ciudad para desarrollar soluciones tecnológicas creativas y eficaces en colaboración con los vecinos y los funcionarios electos. El CTO o el DSI estudian a la comunidad, aprenden las necesidades de los ciudadanos, planean y ejecutan iniciativas afines, y supervisan la implementación y las mejoras continuas.

Interoperabilidad: los muchos y distintos servicios y herramientas usados en una ciudad inteligente debieran funcionar juntos, para que se comuniquen entre ellos y para compartir datos. Esto necesita de un diálogo y una cuidadosa planificación entre los proveedores de empresas y los gobiernos de la ciudad. La interoperabilidad quiere decir que la nueva infraestructura debe poder funcionar encima de la infraestructura ya existente de una ciudad (por ejemplo, instalar nueva iluminación LED “inteligente” encima de los sistemas de alumbrado ya existentes de la ciudad).

“Una ciudad inteligente es un proceso de continua mejora en los métodos de funcionamiento de la ciudad. No es un big bang.”

JEFE DE PROYECTOS DE UNA CIUDAD INTELIGENTE EN BORDEAUX, FRANCIA

Inicio

¿De qué modo son las ciudades inteligentes relevantes en el espacio cívico y para la democracia?

Tal como se describe con mucho mayor detenimiento en la sección oportunidades de este recurso, las ciudades inteligentes pueden mejorar la eficiencia energética así como la preparación para los desastres, e incrementar la participación cívica. Pero ellas son, de muchas formas, un arma de doble filo y pueden también facilitar una vigilancia excesiva e infringir los derechos de reunión y de libre expresión.

Alumbrado público en Macasar, Indonesia. Las ciudades inteligentes tienen el potencial para alcanzar las metas de reducción del carbono y de energía renovable, así como mejorar la eficiencia económica y la distribución energética. Crédito de la fotografía: USAID.
Alumbrado público en Macasar, Indonesia. Las ciudades inteligentes tienen el potencial para alcanzar las metas de reducción del carbono y de energía renovable, así como mejorar la eficiencia económica y la distribución energética. Crédito de la fotografía: USAID.

En países autoritarios, las ciudades inteligentes pueden convertirse en unos poderosos instrumentos para la manipulación y el control. Las de China, por ejemplo, están vinculadas con el concepto que el Partido Comunista Chino tiene del “manejo social”, esto es los intentos del partido gobernante por dar forma, manejar y controlar la sociedad. Cuando se implementan sin transparencia o respeto por el imperio de la ley, las tecnologías de las ciudades inteligentes —como un medidor de luz inteligente, que busca mejorar la precisión de las lecturas— puede ser abusado por el gobierno como un indicador de comportamientos “anormales” que indican reuniones “ilegales”. En casos extremos, la vigilancia y el monitoreo facilitados por una ciudad inteligente podrían disuadir a la ciudadanía de reunirse para protestar, o de expresar de algún otro modo su oposición a las leyes y directrices locales.

La participación de actores autoritarios en el diseño y funcionamiento de las ciudades inteligentes constituye una amenaza significativa para la democracia, en particular en países con tendencias intolerantes preexistentes o débiles instituciones de supervisión. Los socios de la tecnológica china Huawei —que brinda “soluciones” de ciudad inteligente que incluyen el reconocimiento facial y de placas de autos, el monitoreo de medios sociales y otras capacidades de vigilancia—tienden a ser no liberales, lo que hace surgir la preocupación de que el Partido Comunista Chino está exportando autoritarismo. En al menos dos casos, los técnicos de Huawei “ayudaron a gobiernos africanos a espiar a sus opositores políticos, incluso interceptando sus comunicaciones encriptadas y medios sociales, y usaron los datos de celulares para rastrear su ubicación”.

Desarrollar una ciudad inteligente que respete los derechos requiere de la participación activa de la sociedad, desde las etapas iniciales de planificación hasta la implementación del proyecto. Los mecanismos que permiten a los ciudadanos manifestar sus preocupaciones y dar retroalimentación podrían hacer bastante por construir la confianza y alentar la participación cívica más adelante. La educación y los programas de capacitación debieran también implementarse durante la etapa de planificación, para así ayudar a los ciudadanos a entender cómo usar la tecnología que les rodea, así como el modo en que beneficiará su vida cotidiana.

Las ciudades inteligentes pueden crear nuevas vías para la participación en los procesos democráticos, por ejemplo mediante el voto electrónico. Sus partidarios subrayan los beneficios como “resultados más rápidos, reducción de costos y accesibilidad remota, lo que podría potencialmente incrementar la participación electoral”. Pero tienden a “subestimar los riesgos tales como el fraude electoral, las violaciones de la seguridad, problemas de verificación, y errores y fallos de software”. Si bien las ciudades inteligentes giran en torno a la formulación de políticas focalizadas en la tecnología, los retos que las comunidades urbanas experimentan requieren de soluciones estructurales en las cuales la tecnología apenas es uno de los componentes.

Distrito comercial empresarial de Nairobi, Kenia. Algunas ciudades inteligentes, como Nairobi, fueron levantadas sobre la infraestructura ya existente de las ciudades. Crédito de la fotografía: USAID East Africa Trade and Investment Hub.
Distrito comercial empresarial de Nairobi, Kenia. Algunas ciudades inteligentes, como Nairobi, fueron levantadas sobre la infraestructura ya existente de las ciudades. Crédito de la fotografía: USAID East Africa Trade and Investment Hub.

La tecnología de las ciudades inteligentes podía tener como resultado una mayor privatización de la infraestructura gubernamental, lo que en última instancia “desplaza[ría] los servicios públicos, reemplaza[ría] la democracia con la toma de decisiones corporativa, y permiti[ría] que las agencias gubernamentales evadan las protecciones constitucionales y las leyes de rendición de cuentas a favor de la recolección de más datos”. En algunos casos, las autoridades que se dedican a conseguir contratos para las tecnologías de ciudad inteligente se han negado a revelar información acerca de las negociaciones, o evadido por completo los procedimientos estándares de compras públicas.

Así, las normas de privacidad, las regulaciones de protección de datos y los sistemas de debido proceso son todos componentes vitales de una ciudad inteligente que realmente beneficie a la ciudadanía. Una sólida infraestructura legal puede también proporcionar a los ciudadanos un recurso en caso de discriminación o abuso, incluso antes ser una ciudad inteligente. En India, “el impulso hacia las ciudades inteligentes detonó el lanzamiento de la gente de los barrios bajos y los asentamientos informales sin que se diera una compensación adecuada con un alojamiento alternativo”. Sucede con demasiada frecuencia que ciudades que se llaman a sí mismas “inclusivas”, benefician fundamentalmente a la elite y no logran abordar las necesidades de mujeres, niños, migrantes, minorías, personas con discapacidades, de los que operan en la economía informal, los grupos de bajos ingresos o de personas con bajos niveles de conocimientos digitales. Dada la variación en las normas legales entre países, los marcos de los derechos humanos podrían ayudar a informar la implementación equitativa de las ciudades inteligentes, para así asegurar que beneficien al conjunto de la sociedad, las comunidades vulnerables inclusive. La sociedad civil y los gobiernos debieran tener en cuenta 1) si la tecnología es apropiada para el objetivo y si alcanza su meta, 2) si la tecnología es necesaria en la medida en que no excede su fin y no hay otra forma de alcanzar la meta, y 3) si la tecnología es proporcional, lo que quiere decir que los problemas o inconvenientes no superarán los beneficios del resultado.

Inicio

Oportunidades

Las ciudades inteligentes pueden tener una serie de impactos positivos cuando se las usa para promover la democracia, los derechos humanos y la buena gobernanza.

Sostenibilidad medioambiental

Según la OCDE, las ciudades modernas usan casi las dos terceras partes de la energía mundial, producen hasta el 80% de las emisiones globales de gases de efecto invernadero, y generan el 50% de los desperdicios mundiales. Las ciudades inteligentes pueden contribuir al Objetivo de Desarrollo Sostenible 11 de hacer que las ciudades y asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles aprovechando los datos para mejorar la eficiencia económica y la distribución energética, reduciendo así en última instancia la huella de carbono de la ciudad e introduciendo nuevas oportunidades de energías renovables. Las ciudades inteligentes a menudo están vinculadas a prácticas económicas circulares, las cuales incluyen el “supraciclaje” del agua de lluvia, materiales de desecho y hasta datos públicos abiertos (véase más adelante). Además, las tecnologías de ciudades inteligentes pueden aprovecharse para ayudar a prevenir la pérdida de biodiversidad y de hábitats naturales.

Preparación para los desastres

Las ciudades inteligentes pueden ayudar a mejorar la preparación para los desastres, su mitigación, respuesta y recuperación. La recolección y análisis de los datos pueden aplicarse al monitoreo de amenazas ambientales, y los sensores remotos pueden mapear los peligros. Por ejemplo, los datos abiertos y la inteligencia artificial pueden usarse para identificar las áreas que es más probable que sean las más duramente golpeadas por los terremotos. Los sistemas de alerta temprana, los sistemas de alerta de los medios sociales, GIS y los sistemas móviles podrían también contribuir a la gestión de desastres. Un problema importante durante los desastres naturales es la pérdida de las comunicaciones; en una ciudad inteligente, los sistemas interconectados pueden compartir información acerca de qué zonas necesitarán ayuda o reabastecimiento cuando los canales individuales de comunicación colapsen.

Inclusión social

Las ciudades inteligentes pueden facilitar la inclusión social en formas importantes: mediante un acceso rápido y seguro a la internet; con mejoras en el acceso al gobierno y a los servicios sociales; con vías para el input y la participación ciudadanos; con mejoras en el transporte y la movilidad urbana; etc. Por ejemplo, las ciudades inteligentes pueden establecer una red de puntos de acceso urbanos en donde los residentes pueden acceder a capacitación en habilidades digitales, en tanto que la digitalización de los servicios de salud podría mejorar las oportunidades del cuidado de salud y ayudar a los pacientes a conectarse con su historial médico. Las ciudades podrían incluso mejorar los servicios para los grupos vulnerables aprovechando responsablemente los conjuntos de datos sensibles para mejorar su comprensión de las necesidades de estos ciudadanos; sin embargo, dichos datos deben darse con pleno consentimiento, y se deben colocar unas fuertes salvaguardas de privacidad y seguridad. Las tecnologías de las ciudades inteligentes podrían asimismo emplearse para conservar el patrimonio cultural.

Compartir conocimientos e información abierta

Un enfoque abierto de los datos captados por las terminologías inteligentes podría acercar más al gobierno, las empresas y la sociedad civil. Los datos públicos o abiertos —a diferencia de los sensibles datos privados— son aquellos a los que todos pueden acceder, usar y compartir. Un enfoque de acceso abierto para los datos significa permitir al público tener acceso a estos tipos de datos públicos y reutilizables para que aprovechen por sí mismos los beneficios económicos y sociales. Este enfoque podría asimismo brindar transparencia y reforzar la rendición de cuentas y la confianza entre la ciudadanía y el gobierno, por ejemplo al mostrar el uso dado a los fondos públicos. Además de los datos abiertos, el diseño del software que subyace a la infraestructura de una ciudad inteligente puede compartirse con el público a través de un diseño de código abierto y estándar abierto. Código abierto se refiere a una tecnología cuyo código fuente está libremente disponible para el público, de modo tal que cualquiera puede revisarlo, replicarlo, modificarlo o extenderlo. Los estándares abiertos son directrices que ayudan a asegurar que la tecnología sea diseñada ante todo para ser de código abierto.

Participación ciudadana

Las ciudades inteligentes pueden alentar a la ciudadanía a tomar parte de modo más activo en sus comunidades y su gobernanza, al facilitar oportunidades de voluntariado y de compromiso con la comunidad, así como solicitando retroalimentación acerca de la calidad de los servicios y la infraestructura. Conocidas a veces como “e-participación”, las herramientas digitales pueden reducir las barreras entre los ciudadanos y la toma de decisiones, facilitando así su participación en el diseño de leyes y estándares, en la elección de iniciativas urbanas, etc. Las Naciones Unidas han identificado tres pasos en la -participación: e-información, e-consulta y e-toma de decisiones.

Inicio

Riesgos

El uso de tecnologías emergentes podría también crear riesgos en la programación de la sociedad civil. Esta sección describe cómo distinguir los posibles peligros asociados con las ciudades inteligentes en el trabajo de DRG, así como de qué modo mitigar las consecuencias involuntarias y voluntarias.

Vigilancia y participación forzada

Como ya se indicó, las ciudades inteligentes a menudo dependen de cierto grado de vigilancia ciudadana, a cuyas desventajas usualmente se les resta importancia en las campañas de marketing. Un proyecto planeado de ciudad inteligente en Toronto, Canadá, al que se publicitaba como una herramienta con la cual abordar los problemas de asequibilidad y transporte de la ciudad, fue finalmente arruinado por la pandemia de COVID-19 y un escrutinio significativo de la privacidad y el recojo de datos.

En muchos países las personas deben dar su consentimiento informado para que sus datos sean legalmente recogidos, guardados y analizados. Incluso cuando los usuarios optan por darlos a ciegas a una página web o app, hay al menos una opción clara para dejar de hacerlo. Pero en los espacios públicos no hay una forma directa para que la gente decida retirar su consentimiento. ¿Los ciudadanos han consentido a ser vigilados cuando cruzan la calle? ¿Han sido informados de cómo se usarán los datos recogidos acerca de sus movimientos y comportamientos? En las democracias hay oportunidades para presentar un recurso en caso los datos personales recogidos a través de la vigilancia sean mal utilizados, pero en los entornos más autoritarios esto podría no ser así. En China, por ejemplo, el uso de millones de cámaras de vigilancia que reconocen rostros, las formas de los cuerpos y cómo es que la gente camina facilitan el rastreo de las personas para sofocar el disenso.

La discriminación a veces queda facilitada gracias a la tecnología de vigilancia y reconocimiento facial de una ciudad inteligente. La infraestructura de estas ciudades puede dar a las agencias policiales y de seguridad la capacidad de rastrear y poner la mira en ciertos grupos, tales como las minorías étnicas o raciales. Esto sucede en las sociedades democráticas tanto como en las no democráticas. Un estudio de 2019 efectuado por el Instituto Nacional de Estándares y Tecnología de los EE.UU., halló que los algoritmos de reconocimiento facial tienen un pobre desempeño cuando examinan los rostros de mujeres, personas de color, ancianos y niños. Esto resulta particularmente preocupante considerando que muchos departamentos policiales emplean dicha tecnología para identificar sospechosos y efectuar arrestos. Además del reconocimiento facial se usa también la analítica de datos para anticipar posibles lugares de un futuro delito (una práctica a la que se conoce como policía predictiva). Una típica respuesta a este análisis es el incremento en la vigilancia de zonas de “alto riesgo”, las cuales usualmente son barrios con comunidades de menores ingresos y de minorías.

Manejo no ético de los datos y libertad de expresión

El volumen de datos compartidos va creciendo a medida que una ciudad va quedando más conectada digitalmente. Por ejemplo, un usuario de teléfono inteligente podría usar los datos de geoubicación y otros metadatos más con múltiples aplicaciones, las cuales a su vez podrían compartir los datos con otros servicios. Y sin embargo, a medida que las ciudades agregan y procesan los datos acerca de los vecinos, las expectativas de privacidad en la vida cotidiana de la gente van colapsando. La recolección de ciertos tipos de datos, como la información acerca de a dónde ha ido en su carro, o qué tan rápido usualmente maneja, podrían parecer inocuos. Pero cuando se les combina con otros datos se establecen rápidamente patrones que podrían revelar información más sensible acerca de su salud y sus hábitos, su familia y sus redes, la composición de su hogar o sus prácticas religiosas.

La información personal es valiosa para las compañías, y muchas de ellas prueban su tecnología en países con las menores restricciones a los datos. En manos de compañías privadas, los datos pueden ser explotados para focalizar la publicidad, calibrar los costos de los seguros, etc. Hay también riesgos cuando los datos son recogidos por terceros (compañías extranjeras en particular) que podrían encerrar a los usuarios en sus servicios, no compartir información acerca de los fallos de seguridad, tener mecanismos inadecuados de protección de datos, o que mantienen acuerdos de compartirlos con otros gobiernos. Estos últimos también se benefician con el accesso a los datos íntimos de sus ciudadanos: “[L]a información personal recogida como parte de una encuesta de salud podría ser reutilizada por un cliente, digamos un partido político desesperado por ganar una elección”. Según el innovador social y empresario ghanés Bright Simmons, “la lucha por la protección de los datos y los derechos digitales es la nueva lucha por los derechos civiles en el continente”.

Empeoramiento de la desigualdad y marginación

En muchos casos los teléfonos inteligentes y las apps contenidas en ellos facilitan el acceso a los beneficios plenos de una ciudad inteligente. Para 2019, un estimado de cinco billones de personas tenían un dispositivo móvil, y más de la mitad de ellos eran teléfonos inteligentes. Pero estas cifras varían entre los países avanzados y los que están en vías de desarrollo, así como entre comunidades o grupos de una economía dada, potencialmente generando desigualdad en el acceso a los servicios y la participación cívica. Los ciudadanos con menos conocimientos alfabéticos y habilidades de numerismo, o que no hablan la lengua usada por una aplicación, tendrán más dificultades conectándose a través de estas interfaces. La dependencia de apps también aliena a las poblaciones sin hogar, que no podrían cargar sus dispositivos con regularidad, o correrían mayor riesgo de que sus aparatos les sean robados.

El término “brecha digital” por lo general se refiere a la brecha entre las personas que tienen acceso y familiaridad con la tecnología de alta calidad y tecnología segura, y las que no lo tienen. Las ciudades inteligentes a menudo son criticadas por haber sido diseñadas para la elite y privilegiar a quienes ya se encuentran conectados digitalmente. De ser este el caso, dichas ciudades sólo podrían exacerbar la gentrificación y el desplazamiento de quienes no tienen vivienda.

El uso de la vigilancia en las ciudades inteligentes podría también usarse para reprimir a las minorías. Bastante se ha reportado acerca de la vigilancia gubernamental de la población musulmana china de los uigures de Sinkiang.

“Combina los datos —desde los tipos sanguíneos y la altura de las personas, a información acerca de su uso de electricidad y entrega de paquetes— y alerta a las autoridades cuando considera que algo o alguien es sospechoso. Forma parte de la Plataforma Integrada de Operaciones Conjuntas (PIOC), el sistema principal de vigilancia masiva en Sinkiang”.AS SEGÚN FUERA DESCRITO POR HUMAN RIGHTS WATCH

Despotismo de los datos y fallos en la automatización

Se ha acusado a las ciudades inteligentes del “despotismo de los datos.” Si los gobiernos de ciudades pueden acceder a tantos datos acerca de sus ciudadanos, ¿entonces para qué molestarse en hablar con ellos directamente? Debido a posibles discriminaciones algorítmicas, fallos en el análisis e interpretación de datos, o ineficiencias entre la tecnología y los humanos, la dependencia excesiva de la tecnología podría dañar a los más vulnerables de una sociedad.

Se cuenta también con mucha literatura acerca del “Estado de bienestar digital”. Philip Alston, el ex relator especial de las Naciones Unidas para la pobreza extrema y los derechos humanos, ha observado que las nuevas tecnologías digitales están cambiando la relación entre los gobiernos y los más necesitados de protección social: “Las decisiones cruciales de pasar a lo digital han sido tomadas por ministros de gobierno sin consultar, o incluso por funcionarios de departamentos sin que ninguna discusión política significativa tuviese lugar”.

Cuando los servicios humanos básicos sean automatizados y los operarios humanos hayan sido retirados, los problemas de software y pequeños fallos en los sistemas de elegibilidad podrían ser peligrosos y hasta fatales. En la India, en donde muchos servicios de bienestar social y servicios sociales fueron automatizados, un hombre de 50 años falleció de desnutrición debido a un problema con su identificador biométrico de la huella digital, lo que le impidió acceder a una tienda de raciones. “Las decisiones acerca de usted fueron tomadas por un servidor centralizado, y usted ni siquiera sabe qué ha salido mal… La gente no sabe por qué [el apoyo de bienestar social] se ha detenido y tampoco sabe a quién dirigirse para resolver el problema”, explicó Reetika Khera, un profesor asociado de economía en el Indian Institute of Management Ahmedabad.

Estos procesos automatizados asimismo crean nuevas oportunidades para la corrupción. Beneficios tales como las pensiones y salarios, que están ligados al sistema de ID digital de la India (llamado Aadhaar), a menudo se retrasan o no llegan en absoluto. Cuando una mujer de 70 años descubrió que su pensión estaba siendo enviada a la cuenta bancaria de otra persona, el gobierno le dijo que resolviera la situación hablando directamente con dicha persona.

Empeoramiento de los desplazamientos

Al igual que otros proyectos urbanos, el desarrollo de las ciudades inteligentes puede desplazar a los residentes, a medida que los barrios existentes son demolidos para levantar nuevas edificaciones. Se calcula que alrededor del 60% a 80% de la población mundial desplazada forzosamente vive en áreas urbanas (y no en campamentos, como muchos creerían), y que un billón de personas (cifra ésta que se espera se duplique para 2030) en las ciudades en vías de desarrollo viven en zonas de barrios bajos, a las que la ONU define como áreas sin acceso a mejor agua, instalaciones de saneamiento, seguridad, viviendas duraderas y suficiente superficie habitable. En otras palabras, las áreas urbanas son el hogar de grandes poblaciones de los más vulnerables de la sociedad, lo que incluye a las personas desplazadas internamente así como a migrantes que no se benefician de las mismas protecciones legales que los ciudadanos. Las ciudades inteligentes podrán parecer una solución ideal para los desafíos urbanos, pero corren el riesgo de perjudicar aún más a estos grupos vulnerables, y no olvidemos que ellas descuidan por completo las necesidades de las poblaciones rurales.

“Corporatización”: el dominio del sector privado

Las ciudades inteligentes constituyen una enorme oportunidad para el sector privado, desatando los temores de la “corporatización de la gobernanza de la ciudad”. Las grandes compañías de TI, las telecomunicaciones y de manejo de energía como Huawei, Alibaba, Tencent, Baidu, Cisco, Google, Schneider Electric, IBM y Microsoft son las fuerzas impulsoras detrás de la tecnología de las iniciativas de ciudades inteligentes. Como explicara: Sara Degli-Esposti, una research fellow honoraria de la Universidad de Coventry: “No podemos entender las ciudades inteligentes sin hablar de los modelos empresariales de los gigantes digitales… Estas corporaciones ya son entidades globales que escapan en gran medida a la supervisión gubernamental. ¿Qué nivel de control esperan los gobiernos locales ejercer sobre estos jugadores?”.

El papel importante otorgado de este modo a las compañías privadas internacionales en la gobernanza municipal plantea problemas de seguridad para los gobiernos, conjuntamente con las preocupaciones de privacidad de los ciudadanos ya indicadas. Además, la dependencia del software y los sistemas del sector privado podría crear una condición de dependencia del proveedor (cuando se hace demasiado costoso pasarse a otro proveedor). Esta dependencia podría empeorar con el paso del tiempo: a medida que más servicios son añadidos a la red, el costo de pasarse a un nuevo sistema se hace aún más prohibitivo.

Riesgos de seguridad

Conectar los dispositivos a través de una red eléctrica inteligente o de la Internet de la cosas trae consigo serias vulnerabilidades de seguridad para las personas y la infraestructura. Las redes conectadas tienen más puntos de vulnerabilidad y son susceptibles al hackeo y los ciberataques. A medida que los sistemas inteligentes recogen más datos personales acerca de los usuarios (como los historiales médicos), hay un riesgo cada vez mayor de que unos actores no autorizados consigan acceder a esta información. La comodidad de un wi-fi público y abierto también tiene un costo puesto que es mucho menos seguro que las redes privadas. La IdC ha sido ampliamente criticada por su falta de seguridad, debido en parte a su novedad y falta de regulación. Los dispositivos conectados por lo general son fabricados para que sean baratos y accesibles, y que la ciberseguridad no sea la preocupación más grande.

Cuanto más estrechamente vinculada esté la infraestructura, tanto más rápidos y de mayor alcance serán los ataques. La infraestructura vinculada digitalmente como pequeñas redes incrementa los riesgos de ciberseguridad debido al número más grande de operadores y terceros conectados a la red, lo que multiplica las consideraciones de gestión de riesgo de la cadena de suministros. Según Anjos Nijk, director de la Red Europea de Ciberseguridad: “Con la actual velocidad de digitalización de los sistemas de las redes eléctricas… y la velocidad con que nuevos sistemas y tecnologías se conectan a ellas, como la medición inteligente, los vehículos eléctricos que cargan y la IdC, estas redes se han vuelto vulnerables y la ‘superficie de ataque’ se expande rápidamente”. Dañar una parte de un gran sistema interconectado podría producir un efecto de cascada sobre otros sistemas, lo que potencialmente tendría como resultado apagones a gran escala o la desactivación de la crucial infraestructura de salud y transporte. Las redes eléctricas pueden ser abatidas por los hackers, tal como la experimentara la de Ucrania en el ciberataque de diciembre de 2015.

Inicio

Preguntas

Hágase estas preguntas si está intentando entender las implicaciones que las ciudades inteligentes tienen en su entorno laboral, o si está considerando cómo usar algunos aspectos de ella como parte de su programación de DRG:

  1. ¿El servicio en cuestión tiene que ser digital o estar conectado a la red? ¿La digitalización mejorará este servicio para los ciudadanos, y acaso la mejora esperada pesa más que los riesgos?
  2. ¿Se cuenta con programas para asegurar que las necesidades fundamentales de los ciudadanos están siendo satisfechas (acceso a comida, seguridad, vivienda, sustento, educación)?
  3. ¿Qué actores externos tienen el control o acceso a aspectos cruciales de la tecnología y la infraestructura de la que este proyecto dependerá, y con qué medidas de ciberseguridad se cuenta?
  4. ¿Quién construirá y mantendrá la infraestructura y los datos? ¿Hay el riesgo de quedar dependiendo de ciertas tecnologías o de acuerdos con los proveedores de los servicios?
  5. ¿Quién tiene acceso a los datos recogidos y cómo están éstos siendo interpretados, usados y almacenados? ¿Qué actores externos tienen acceso a ellos? ¿Los datos están disponibles para su reutilización legal y segura por parte del público? ¿Cómo están los datos abiertos siendo reutilizados o compartidos públicamente?
  6. ¿Cómo respetarán los servicios de la ciudad inteligente a la privacidad de los ciudadanos? ¿Cómo se obtendrá su consentimiento cuando utilicen servicios que capten datos acerca de ellos mismos? ¿Pueden optar por dejar de compartir esta información? ¿Qué protecciones legales están vigentes en torno a la protección y la privacidad de los datos?
  7. ¿Los servicios inteligentes son transparentes y responsables? ¿Los investigadores y la sociedad civil tienen acceso al funcionamiento “detrás de cámaras” de estos servicios (datos, código, API, algoritmos, etc.)?
  8. ¿Qué medidas se han dispuesto para abordar los sesgos en estos servicios? ¿Cómo asegura este servicio que no exacerbará las barreras socioeconómicas y las desigualdades ya existentes? ¿Qué programas y medidas se han establecido para promover la inclusión?
  9. ¿Cómo respetan y preservan estos desarrollos los sitios y barrios históricos? ¿Cómo se adaptarán los cambios a las identidades culturales locales?

Inicio

Estudios de caso

Barcelona, España

Barcelona a menudo es llamada la mejor práctica de una ciudad inteligente debido a su vigoroso diseño democrático impulsado por la ciudadanía. Su infraestructura de ciudad inteligente consta de tres componentes primarios: Sentilo, una plataforma de recolección de datos de código abierto; CityOS, un sistema para procesar y analizar los datos recolectados; e interfaces de usuario que permiten a los ciudadanos acceder a los datos. Este diseño de código abierto mitiga el riesgo de la dependencia de una empresa y permite que la ciudadanía conserve la propiedad colectiva de sus datos, así como dar input sobre cómo se les procesa. Decidim (“Nosotros decidimos”), una plataforma participativa digital, permite la participación ciudadana en el gobierno mediante la sugerencia y debate de ideas. Barcelona también ha implantado iniciativas de democracia digital y proyecta mejorar el alfabetismo digital de sus ciudadanos. En 2018 Francesca Bria la comisionada de tecnología e innovación digital de Barcelona, comentó la reversión del paradigma de ciudad inteligente: “En lugar de comenzar con la tecnología y extraer todos los datos que podamos antes de pensar cómo utilizarlos, comenzamos alineando la agenda tecnológica con la agenda de la ciudad”.

Belgrade, Serbia

A partir de 2019, el gobierno serbio comenzó a implementar un proyecto de Ciudad segura en la ciudad capital de Belgrado. La instalación de 1,200 cámaras de vigilancia inteligentes, proporcionadas por el gigante tecnológico chino Huawei, lanzó una señal de alerta entre el público, la sociedad civil y hasta algunas de las instituciones de la Unión Europea. El comisionado serbio de información de importancia pública y la protección de los datos personales fue uno de los primeros en hacer sonar la alarma, afirmando que “no hay base legal alguna para la implementación del proyecto Ciudad Segura”, y que para abordar la tecnología de reconocimiento facial y el procesamiento de los datos biométricos sería necesario contar con nuevas leyes. Tal como Danilo Krivokapić, director de la Fundación SHARE, una organización de derechos digitales con sede en Belgrado, observara, “El público no fue informado del ámbito técnico o precio del sistema, las necesidades específicas que buscaba abordar, o las salvaguardas que serían necesarias para mitigar los posibles riesgos para los derechos humanos”. En un esfuerzo por mejorar la transparencia del proyecto, la Fundación SHARE desarrolló un mapa colaborativo que mostraba ubicaciones verificadas de cámaras y sus características técnicas, lo que terminó difiriendo sustancialmente de una lista de ubicaciones proporcionada por los funcionarios. Dos años después del lanzamiento del proyecto de Ciudad Segura en Belgrado, un grupo de MEP le dirigió una carta al ministro del interior del Parlamento Europeo para manifestar su preocupación de que Belgrado se convirtiera en “la primera ciudad de Europa en tener la inmensa mayoría de su territorio cubierto por técnicas de vigilancia masiva”.

Konza, Kenia

La Ciudad Tecnológica de Konza, el emblema de Visión 2030, el plan de desarrollo económico de Kenia, promete ser una “ciudad de clase mundial, propulsada por un floreciente sector de tecnologías de la información y la comunicación (TIC), infraestructura superior confiable, y sistemas de gobernanza favorable a las empresas”. Los planes para la ciudad incluyen la recolección de datos con dispositivos inteligentes y sensores insertados en el entorno urbano para informar el suministro de servicios mejorados digitalmente. Según la página web oficial de Konza, la población de la ciudad tendrá acceso directo a los datos recolectados (como mapas de tráfico, advertencias de emergencias e información acerca del consumo energético y de agua), lo que permitirá a la ciudadanía “participar directamente en las operaciones de la ciudad, practicar patrones de vida más sostenibles, y mejorar la inclusividad general”. Entre el anuncio de los planes para el desarrollo de Konza en 2008 y el viaje de un periodista a la ciudad en 2021, es poco el avance que parece haberse realizado no obstante las pretensiones de que la ciudad habría creado 100,000 puestos de trabajo para 2020, y generado $1 billón al año para la economía keniana. Y sin embargo, las inversiones realizadas por Corea del Sur podrían haberle insuflado nueva vida al proyecto en 2023, puesto que nuevos proyectos estaban listos para realizarse, entre ellos el desarrollo de un sistema inteligente de transporte (SIT) y un centro de control integrado.

Neom, Arabia Saudita

En 2021, el príncipe heredero saudita Mohamed bin Salmán reveló los planes iniciales para The Line, una ciudad lineal futurista que sería construida verticalmente, no tendría pistas ni autos y funcionaría sólo con energía renovable. The Line forma parte del proyecto de megaciudad Neom de $500 billones, el cual ha sido descrito no sólo como una ciudad “inteligente” sino también como una “cognitiva”. Esta ciudad cognitiva se alza sobre tres pilares: “la capacidad de ciudadanos y empresas para conectarse digitalmente a cosas físicas; la capacidad de poder procesar o analizar estas cosas; y la capacidad para contextualizar, usando dicha conectividad para propulsar nuevas decisiones”. La documentación de planificación preparada por consultores de los EE.UU. incluía algunas tecnologías que ni siquiera existen aún, como taxis voladores, la “siembra de nubes” para producir lluvia y sirvientas robot. Además de ser algo fantástico, el proyecto fue también controversial desde su inicio. Alrededor de 20,000 personas, entre ellos miembros de la tribu indígena howeitat, enfrentaban su reubicación forzada debido a las construcciones para el proyecto; según Al Jazeera, un prominente activista howeitat fue arrestado y encarcelado en 2020 por la negativa de la tribu a ser reubicada. La preocupación también se debe al fortalecimiento de los lazos entre el príncipe heredero y Xi Jinping, el secretario general del Partido Comunista de China, quien aceptó brindarle a Arabia Saudita una poderosa tecnología de vigilancia. Marwa Fatafta, gerente de políticas en Access Now, una organización de derechos digitales con sede en Berlín, advirtió que las capacidades de la ciudad inteligente podrían ser desplegadas como una herramienta para la vigilancia invasiva por parte de los servicios de seguridad del Estado. Esto podría incluir el uso de la tecnología de reconocimiento facial para rastrear los movimientos en tiempo real y vincular esta información con otros conjuntos de datos, como la información biométrica. Arabia Saudita tiene un historial demostrado del uso de la tecnología para reprimir las opiniones en línea, lo que incluye el uso del spyware Pegasus para monitorear a los críticos y el robo de los datos personales de usuarios de Twitter que criticaron al gobierno.

Singapur

La iniciativa Smart Nation de Singapur fue lanzada en 2014 para combinar TIC, redes y datos para desarrollar una solución para una población envejecida, la densidad urbana y la sostenibilidad energética. En 2023, Singapur fue nombrada la mejor cuidad del Asia por el índice de ciudades inteligentes del Institute for Management Development, que ordena a 141 ciudades según su uso de la tecnología para alcanzar una mejor calidad de vida. La infraestructura de ciudad inteligente de Singapur incluye vehículos autónomos; robots patrulleros programados para detectar comportamientos “indeseables”; sistemas de gestión de servicios domésticos; robots que trabajan en construcción, bibliotecas, estaciones del metro, cafeterías y en la industria médica; sistemas de pago sin efectivo; y servicios de realidad aumentada y real. Cientos de aparatos, sensores y cámaras esparcidos a lo largo de 160 kilómetros de autopistas y túneles (a los que se conoce colectivamente como el Sistema Inteligente de Transporte o SIT) reúnen datos para monitorear y manejar los flujos de tráfico y hacer que las pistas sean más seguras. La iniciativa de e-salud de Singapur incluye un portal en línea que permite a los pacientes reservar citas y renovar recetas, servicios de telemedicina que permiten a los pacientes consultar a los médicos en línea, y dispositivos de IdC vestibles que monitorean el avance de los pacientes durante la telerehabiitación. En un país en donde se calcula que el 90% de la población tiene un teléfono inteligente, la app Smart Nation de Singapur es una plataforma de una sola parada en donde se puede acceder a una amplia gama de servicios e información del gobierno.

Toronto, Canadá

En 2017, Toronto le otorgó un contrato a Sidewalk Labs, una subsidiaria de ciudad inteligente de Alphabet, la compañía matriz de Google, para que convirtiera el litoral oriental de la ciudad en una utopía de alta tecnología. El proyecto buscaba promover un nuevo modelo de desarrollo inclusivo que se “esforzará por alcanzar los más altos niveles de sostenibilidad, oportunidad económica, asequibilidad de las viviendas y una nueva movilidad”, y que además sirviera como un modelo para la resolución de los problemas urbanos en ciudades de todo el mundo. Sidewalk Labs planeaba levantar viviendas sostenibles, construir nuevos tipos de carreteras para vehículos autónomos, y usar sensores para recoger datos e informar el uso de energía, ayudar a detener la contaminación y disminuir el tráfico. Sin embargo, el proyecto enfrentó constantes críticas de los habitantes de la ciudad e incluso del comisionado de información y privacidad de Ontario, debido a la forma en que la compañía enfocaba la privacidad y la propiedad intelectual. Un experto en privacidad dejó su papel consultor en la iniciativa para “enviar una fuerte declaración” acerca de las cuestiones de privacidad que el proyecto enfrentaba, luego de enterarse de que terceros podrían tener acceso a información identificable reunida en el distrito del litoral. El proyecto fue finalmente abandonado en 2022, supuestamente debido a la incertidumbre económica sin precedentes provocada por la pandemia de COVID-19.

Inicio

Referencias

A continuación encontrará los trabajos citados en este recurso.

Recursos adicionales

Inicio

Categories

Digital Development in the time of COVID-19